# Learning Acoustic Word Embeddings from Sequence-to-Sequence Models



Shruti Palaskar



What is this talk about?

How to cram meaning of speech into a vector!?!

But...

"You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#\* vector!"

- Raymond Mooney

# How to *try to* cram the meaning of a whole sentence into a single vector?

- > ELMo, BERT
- > word2vec, glove

### Text Embeddings

- Representing written words or sentences as continuous valued fixed dimensional vectors
- Common representation for various words/sentences/languages
- Useful as off-the-shelf pre-trained features for other tasks



Male-Female

Verb tense
Carnegie Mellon University

Country-Capital

## Acoustic Embeddings

- Map speech signal of arbitrary length into a fixed dimensional vector
- This speech signal may be for a word or a sentence



[Figure credit: Herman Kamper]

### Acoustic Embeddings

- Represent speech (an inherently continuous signal) into embeddings (fixed dimensional vectors)
- Speech has many more variations than text like: speaking rate, pronunciation variance, speaker differences, acoustic environment, prosody (emotion etc), intonation, ...
- Can we do the same with speech as text then? Lets see...

### Acoustic Embedding: Uses & Applications

#### Speech Similarity tasks

Spoken Language Understanding

Whole-word Speech Recognition

Spoken Term Discovery

Query-by-example



[Figure credit: Herman Kamper]

# Acoustic Embedding: Uses & Applications

- > Shared representation for speech and other modalities (like text or vision)
  - Easier multimodal interaction for these different modalities
  - Given speech, retrieve text / Given speech retrieve corresponding video!



#### Talk Outline

- I. Learning Acoustic Word Embeddings
  - A. Model: Acoustic-to-Word Speech Recognition
  - B. Understanding A2W models
  - C. Evaluation
- II. Applications of Acoustic Word Embeddings
  - A. Spoken Language Understanding
  - B. Unsupervised speech recognition and spoken language translation

#### Talk Outline

- I. Learning Acoustic Word Embeddings
  - A. Model: Acoustic-to-Word Speech Recognition
  - B. Understanding A2W models
  - C. Evaluation
- II. Applications of Acoustic Word Embeddings
  - A. Spoken Language Understanding
  - B. Unsupervised speech recognition and spoken language translation

# Acoustic-to-Word Speech Recognition

#### This Speech Recognizer can Recognize Speech



# Acoustic-to-Word Speech Recognition

#### This Speech Recognizer can Wreck a Nice Beach



## Acoustic-to-Word Speech Recognition

- Model Probability (Words | Acoustics)
- These acoustics could be any form of representation of speech
- Sequence-to-Sequence model with attention
- Around 30,000 words vocabulary
- Usually 26 character vocabulary (English)
- > No alignment needed like traditional speech recognizers



Chan et al., "Listen, Attend and Spell", 2016

#### Results

# This Speech Recognizer can Wreck a Nice Beach



- Evaluation: Word Error Rate
- On a standard dataset Switchboard

Character models = 15.6%

Word models = 22.1%

- But whole words are semantically meaningful units!
- Can perform non-speech transcription task with speech input!

#### Talk Outline

- I. Learning Acoustic Word Embeddings
  - A. Model: Acoustic-to-Word Speech Recognition
  - B. Understanding A2W models
  - C. Evaluation
- II. Applications of Acoustic Word Embeddings
  - A. Spoken Language Understanding
  - B. Unsupervised speech recognition and spoken language translation

### Understanding Acoustic-to-Word Models

#### This Speech Recognizer can Wreck a Nice Beach



#### Location-aware Attention

- Attention is a rich source of interpretability and understanding in sequence-to-sequence models
- Specially, input speech and output text are monotonic signals unlike Machine Translation or summarization
- Monotonicity: time-synchronous alignments only
- Can enforcing monotonicity help improve ASR performance? Yes.
  [Chan et al., "Listen, attend and spell", 2015]
- New attention mechanism for sequence-to-sequence based ASR

# **Analyzing Attention**

- Each color corresponds to a word in the output
- Highly localized attention
- Peaky distribution
- Last word attention is non-peaky
- ➤ Time steps 80-100 are silence in speech



What is the model learning?

Q1. What does it mean that attention is peaky/localized for a word?

- Model focuses on a single input speech frame for every word
- Model localizes word boundaries without supervision



What is the model learning?

Q2. What does it mean that attention is "absent" between timesteps 80-100?

Model learns to detect speech and non-speech segments without supervision



## What is the model learning?

- Q3. What does every peak corresponding to a word represent?
- It represents a single fixed-size representation of input speech, or the acoustic word embedding



### What *all* is the model learning?

- 1. The model focuses on a single input speech frame for every word
- 2. It localizes word boundaries in continuous speech without supervision
- 3. It learns to detect speech and non-speech segments in continuous speech without supervision
- 4. It represents every output word as a single fixed-size representation of input speech, or the *acoustic word embedding*

### Learning Contextual Acoustic Word Embeddings



- Learning Acoustic Word Embeddings using Attention
- Attention distribution helps learn contextual embeddings by applying a soft context of previous and following words in speech

Palaskar\*, Raunak\* and Metze, "Learned in Speech Recognition: Contextual Acoustic Word Embeddings", 2019

## Using Attention to learn CAWE

$$w_i = \frac{\sum_{k \in K} encoder(a_k)}{n(K)}$$

$$w_i = \frac{\sum_{k \in K} attention(a_k) \cdot encoder(a_k)}{n(K)}$$

$$w_i = encoder(a_k)$$
 where  $k = \arg\max_{k \in K} attention(a_k)$ 

(3) CAWE-M: Arg max of attention weights

> Choose based on application

Palaskar\*, Raunak\* and Metze, "Learned in Speech Recognition: Contextual Acoustic Word Embeddings", 2019

#### Talk Outline

#### I. Learning Acoustic Word Embeddings

- A. Model: Acoustic-to-Word Speech Recognition
- B. Understanding A2W models
- C. Evaluation

#### II. Applications of Acoustic Word Embeddings

- A. Spoken Language Understanding
- B. Unsupervised speech recognition and spoken language translation

### Evaluating Acoustic Word Embeddings

- > Standard Sentence Embedding Evaluation Benchmarks
- There are 17 standard sentence evaluation benchmarks in NLP
- Most new methods to evaluate sentence embeddings are scored on these methods for fair evaluation
- We compare CAWE with text-based word2vec embeddings learned on the transcripts
- A2W models trained on Switchboard (conversational) and How2 (planned but free speech, outdoors, distance microphone)

#### SentEval

- Standard Sentence Embedding Evaluation Benchmarks
- Fixed datasets on Sentence Textual Similarity, classification (movie reviews, product reviews etc), entailment, sentiment analysis, question type etc.
- > Human annotated similarity scores present for this dataset
- Proposed word embeddings are plugged for all words in a sentence (1)
- Similarly, baseline word embeddings are plugged in for all words in a sentence (2)
- Correlation or Classification scores are computed with these two sentence embeddings

# Comparing CAWE methods

|          | Switchboard |        |        | How2   |        |        |
|----------|-------------|--------|--------|--------|--------|--------|
| Dataset  | U-AVG       | CAWE-W | CAWE-M | U-AVG  | CAWE-W | CAWE-M |
| STS 2012 | 0.3230      | 0.3281 | 0.3561 | 0.3255 | 0.3271 | 0.3648 |
| STS 2013 | 0.1252      | 0.1344 | 0.1969 | 0.2070 | 0.2071 | 0.2716 |
| STS 2014 | 0.3358      | 0.3389 | 0.3888 | 0.3375 | 0.3426 | 0.3940 |
| STS 2015 | 0.3854      | 0.3881 | 0.4275 | 0.3852 | 0.3843 | 0.4173 |
| STS 2016 | 0.2998      | 0.2974 | 0.3833 | 0.3248 | 0.3271 | 0.3159 |
| STS B    | 0.3667      | 0.3510 | 0.4010 | 0.3343 | 0.3440 | 0.4000 |
| SICK-R   | 0.5640      | 0.5800 | 0.6006 | 0.5800 | 0.6060 | 0.6440 |
| MR       | 63.86       | 63.75  | 64.69  | 63.46  | 63.19  | 63.64  |
| MRPC     | 70.67       | 69.45  | 69.80  | 68.29  | 67.83  | 70.61  |
| CR       | 71.42       | 72.13  | 72.93  | 74.12  | 73.99  | 73.03  |
| SUBJ     | 82.45       | 82.22  | 81.19  | 81.48  | 81.88  | 81.01  |
| MPQA     | 73.76       | 73.28  | 73.75  | 74.21  | 74.18  | 73.53  |
| SST      | 66.45       | 66.61  | 65.02  | 63.43  | 63.43  | 65.13  |
| SST-FG   | 32.81       | 32.04  | 33.53  | 31.95  | 32.35  | 32.03  |
| TREC     | 63.80       | 62.40  | 67.60  | 66.60  | 66.00  | 60.60  |
| SICK-E   | 74.20       | 73.41  | 74.06  | 75.14  | 75.34  | 75.97  |

CAWE-M always performs better in STS tasks

CAWE-W more generalizable but noisy

**U-AVG** noisiest

## Comparing CAWE with word2vec

|          | Switchboard |        |        | How2   |        |              |
|----------|-------------|--------|--------|--------|--------|--------------|
| Dataset  | CAWE-M      | CBOW   | Concat | CAWE-M | CBOW   | Concat       |
| STS 2012 | 0.3561      | 0.3639 | 0.3470 | 0.3648 | 0.3688 | 0.3790       |
| STS 2013 | 0.1969      | 0.1960 | 0.2010 | 0.2716 | 0.2524 | 0.2675       |
| STS 2014 | 0.3888      | 0.3745 | 0.3795 | 0.3940 | 0.3973 | 0.3971       |
| STS 2015 | 0.4275      | 0.4459 | 0.4481 | 0.4173 | 0.4781 | 0.4710       |
| STS 2016 | 0.3833      | 0.3471 | 0.3651 | 0.3159 | 0.4023 | 0.3388       |
| STS B    | 0.401       | 0.4100 | 0.3995 | 0.4000 | 0.4720 | 0.4487       |
| SICK-R   | 0.6006      | 0.6170 | 0.6228 | 0.6440 | 0.6550 | 0.6945       |
| MR       | 64.69       | 66.24  | 66.89  | 63.64  | 66.03  | 66.89        |
| MRPC     | 69.80       | 68.99  | 68.00  | 70.61  | 69.68  | 68.52        |
| CR       | 72.93       | 74.49  | 75.39  | 73.03  | 74.89  | 74.84        |
| SUBJ     | 81.19       | 84.62  | 84.59  | 81.01  | 84.75  | 85.04        |
| MPQA     | 73.75       | 76.44  | 75.36  | 73.53  | 75.56  | <b>75.60</b> |
| SST      | 65.02       | 68.37  | 68.97  | 65.13  | 67.66  | 68.20        |
| SST-FG   | 33.53       | 34.71  | 35.79  | 32.08  | 33.62  | 33.67        |
| TREC     | 67.60       | 69.80  | 71.40  | 60.60  | 68.40  | 67.40        |
| SICK-E   | 74.06       | 75.02  | 76.19  | 75.97  | 76.29  | 78.14        |

CAWE performs competitively with word2vec

Improvement in concatenation shows both embeddings contribute unique features

Gains more prominent in SWBD as it is conversational while How2 is planned

#### Talk Outline

- I. Learning Acoustic Word Embeddings
  - A. Model: Acoustic-to-Word Speech Recognition
  - B. Understanding A2W models
  - C. Evaluation
- II. Applications of Acoustic Word Embeddings
  - A. Spoken Language Understanding
  - B. Unsupervised speech recognition and spoken language translation

# Spoken Language Understanding

- > Speech-based downstream task other than transcription
- > ATIS dataset of flight queries with intent, domain, and named entities
- Widely used corpus for SLU
- Classification Task: Given query identify intent, domain and named entities
- Prior work used transcription of speech rather than audio input for this task [Mesnil et al. 2013]
- Performance in this task will help validate use of CAWE

# Using CAWE for Spoken Language Understanding

|            | F1 Score       |                |                |  |  |
|------------|----------------|----------------|----------------|--|--|
|            | CAWE-M         | CAWE-W         | CBOW           |  |  |
| RNN<br>GRU | 91.49<br>93.25 | 91.67<br>93.56 | 91.82<br>93.11 |  |  |

- Two simple models: RNN and GRU
- F1 score for classification on CAWE-M, CAWE-W and CBOW
- CAWE performs competitively with text embeddings highlighting its utility
- Can be used as off-the-shelf embeddings for other speech-based tasks when trained on larger data

#### Talk Outline

- I. Learning Acoustic Word Embeddings
  - A. Model: Acoustic-to-Word Speech Recognition
  - B. Understanding A2W models
  - C. Evaluation

#### II. Applications of Acoustic Word Embeddings

- A. Spoken Language Understanding
- B. Unsupervised speech recognition and spoken language translation

#### Multimodal applications: example dataset



## The big picture



# Learning Multimodal Embeddings

- I. Each is different but all views share similar information
- II. Visual, Auditory and Language views are aligned
- III. Views in the same modality v/s Views in multiple modalities
- IV. Unit level representations v/s Sequence Level Representations



#### CCA in a Nutshell



Find transformations 
$$\mathbf{u} \in \mathbb{R}^{d_x}, \mathbf{v} \in \mathbb{R}^{d_y}$$

to maximize 
$$\operatorname{correlation}(\mathbf{u}^T f_{\theta}(X), \mathbf{v}^T g_{\phi}(Y))$$

#### Text Representations - Sentences



#### Video Representations



#### Speech Representations - Sentences [CAWE]



#### Speech and Text Representations



# Retrieve Text Given Speech



# Retrieve Speech Given Text



#### Speech and Video Representations



#### Retrieve Video Given Speech



# Speech, Text and Video Representations



# Retrieval: Speech, Text (En & Pt) and Video on Test Set

Recall@10





Portuguese Text

98.4



|    |     | 914 |      | 455 |     | 6-5             | 655    |     |     |     |    |    |
|----|-----|-----|------|-----|-----|-----------------|--------|-----|-----|-----|----|----|
|    |     |     |      | 5 5 | 300 |                 | Sec. 1 |     |     |     |    |    |
|    |     | 100 |      | B + | 50  |                 |        |     |     |     |    |    |
| 32 |     |     |      |     |     |                 |        | -13 |     |     |    |    |
| 3  |     |     | 33   |     | 9.8 |                 |        |     |     |     |    | п  |
|    |     |     |      |     |     |                 |        |     |     |     |    |    |
| æ  |     |     |      |     |     |                 |        | -   |     |     |    | ١. |
|    |     |     |      |     |     |                 |        |     |     |     |    |    |
|    | 1   | ш.  |      |     |     |                 |        |     |     |     |    |    |
|    | DEC | 0.1 | 0.02 | oke | 200 | C=3             | C+E    | 047 | ols | Ols | 36 |    |
|    |     |     |      |     |     | C-S<br>Time (u) |        |     |     |     |    |    |



| _ | 85. |
|---|-----|
|   |     |

| 85.4 |  |
|------|--|
|      |  |

|  | 1. | 1 |
|--|----|---|
|  | _  | - |

71.0

| _ |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |

| 98.3 |  |  |
|------|--|--|
|      |  |  |













# Retrieve Text Given Speech - Comparison

| Model                            | Recall@10 |
|----------------------------------|-----------|
| Speech & En Text                 | 90.1%     |
| Speech, En Text, Pt Text & Video | 85.4%     |

#### Retrieval for ASR

Given a Speech segment from the test set, retrieve the closest English sentence in a reference set.



| Reference set | WER    |
|---------------|--------|
| S2S Model     | 24.2 % |
| Train         | 134 %  |
| Train + Test  | 27.4 % |

#### Retrieval for SLT

Given a Speech segment from the test set, retrieve the closest Portuguese sentence in a reference set.



| Reference set | BLEU † |
|---------------|--------|
| S2S Model     | 27.9   |
| Train         | 0.2    |
| Train + Test  | 19.8   |

#### To conclude

- Possible to learn pre-trained acoustic word embeddings similar to text (bert, elmo) and vision (alexnet, vggnet)
- 2. These embeddings perform well with text based embeddings and capture complimentary information than text embeddings
- 3. Can perform non-transcription tasks with speech inputs: spoken language understanding
- 4. Can learn shared global multimodal embedding spaces to perform unsupervised ASR, SLT etc

- Possible to learn pre-trained acoustic word embeddings similar to text (bert, elmo) and vision (alexnet, vggnet)
- AWE performs competitively with word2vec and capture complimentary information than text embeddings
- 3. Can perform non-transcription tasks with speech inputs: spoken language understanding
- 4. Can learn shared global multimodal embedding spaces to perform unsupervised ASR, SLT etc

- 1. Possible to learn pre-trained acoustic word embeddings similar to text (bert, elmo) and vision (alexnet, vggnet)
- 2. These embeddings perform well with text based embeddings and capture complimentary information than text embeddings
- Can perform non-transcription tasks with speech inputs: spoken language understanding
- 4. Can learn shared global multimodal embedding spaces to perform unsupervised ASR, SLT etc

- Possible to learn pre-trained acoustic word embeddings similar to text (bert, elmo) and vision (alexnet, vggnet)
- 2. These embeddings perform well with text based embeddings and capture complimentary information than text embeddings
- 3. Can perform non-transcription tasks with speech inputs: spoken language understanding
- 4. Can learn shared global multimodal embedding spaces to perform unsupervised ASR, SLT etc

Thank you!

Questions?

spalaska@cs.cmu.edu