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Abstract

Human learning is inherently multimodal. We watch, listen, read, and communicate to learn

from and understand our surroundings. �ere have been tremendous advancements in Ma-

chine Learning �elds related to these human activities such as Speech Recognition or Computer

Vision that make computationally modeling this human-like inherent multimodal learning a

possibility. Multimodal Video Understanding as a machine learning task is close to this form

of learning.

�is thesis proposes to break down this complex task of video understanding into a series of

relatively simpler tasks with increasing complexity. We start with the monotonic task of speech

recognition and introduce an end-to-end audio-visual speech recognition model. A more com-

plex task is speech translation that tackles re-ordered output sequences in addition to speech

recognition, which is the second task in this thesis. For speech translation, we introduce a

multimodal fusion model that learns to leverage the multiple views multimodal data provides

in a semi-supervised way. Further, we progress to the tasks of multimodal video summariza-

tion and question answering that tackle abstract-level understanding tasks further involving

information compression and restructuring. Finally, we propose to extend this work to multi-

modal commonsense rationale generation that not only performs abstract-level learning, but

also provides an explanation of the achieved video understanding. For the four main tasks, we

present a series of multimodal fusion models based on the nature and complexity of the task,

the modalities involved in each and compare and contrast the models on commonly used video

and language understanding datasets.
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Chapter 1

Introduction

Videos are an inherent part of our day-to-day lives in the 21
st

Century. One of the goals of

Arti�cial Intelligence (AI) research is to teach machines to perform certain tasks to o�-load

human labor, by modeling and simulating human intelligence. Videos closely capture our in-

teractions in the world and o�en contain multiple modalities of information such as the audio,

transcription, and the visuals itself.

Self-recorded instructional videos are a domain of videos that particularly focus on coaching

a viewer on certain tasks, colloquially known as the How-To videos. �ese videos are infor-

mative, explanatory, and with visual and spoken demonstration, for example, making a Cuban

breakfast omelet, or �xing a Polaris swimming pool cleaner (e.g. Figure 1.1). Such videos pro-

vide a readily available, well cra�ed source of instructional information that can be used to

teach machines certain How-To tasks.

With this long-term view in mind, we approach this problem through the task of Multimodal

Video Understanding. �is task accounts for the various modalities available in a video, as well

as performs downstream tasks that demonstrate “understanding”. Video Understanding as a

research problem is still in its nascent phase with various tasks falling under the umbrella term

understanding ranging from video classi�cation to video commonsense reasoning.

Video Understanding was initially approached as a video classi�cation problem analogous

to image classi�cation with time-series input (Karpathy et al., 2014; Yue-Hei Ng et al., 2015;

Szegedy et al., 2016; Abu-El-Haija et al., 2016). Research soon progressed towards human ac-

tion recognition (Simonyan and Zisserman, 2014a; Caba Heilbron et al., 2015; Feichtenhofer

et al., 2016; Carreira and Zisserman, 2017; Kay et al., 2017; Gu et al., 2018), scene understand-

ing (Feichtenhofer et al., 2014; Tran et al., 2015; Ros et al., 2016; Cordts et al., 2016), text-to-video

retrieval (Miech et al., 2019; Gabeur et al., 2020; Albanie et al., 2020), or video captioning (Yao

et al., 2015; Yu et al., 2016; Krishna et al., 2017; Zhou et al., 2018b) and description generation

(Das et al., 2013; Regneri et al., 2013; Donahue et al., 2015). More complex language-based video

understanding task formulations followed the success of easier tasks such as video captioning

1



Introduction 2

Title
How to Repair a Polaris Pool Cleaner?

Summary
Watch as a seasoned professional 

demonstrates how to install the head 
float  of a Polaris 180 Pool Cleaner in this 

free online video about home pool 
maintenance.

Video Audio/Speech

English Transcript
We're going to show you a little bit about 
each part and show you how to put them 

on so you'll have a brand new Polaris 
180.

Portuguese Transcript
Vamos mostrar um pouco sobre cada 

parte e mostrar como colocá-los, assim 
você terá um novíssimo Polaris 180.

Figure 1.1: An example from the How2 dataset showing the di�erent modalities that exist in

this data. �ere are 4 time-synchronous modalities: the video signal, the audio/speech signal,

corresponding English transcripts and the Portuguese transcripts. �ere is a human annotated

textual summary for each video. Additionally, we also have access to relevant metadata such

as the video title, topics, categories, view count, etc.

or description generation. More recently, there is a huge push towards unsupervised, self-

supervised, and semi-supervised approaches to representation learning that use existing an-

notations to train general purpose multimodal representations that can be later used in down-

stream tasks (Chen et al., 2019; Sun et al., 2019; Miech et al., 2020; Arnab et al., 2021).

Despite the tremendous progress in such tasks, the �eld of Video Understanding has not quite

progressed towards holistic Video Understanding that studies the video signal in its natural

form with audio, text, speech, metadata, and other available modalities. �e Multimodal Video

Understanding tasks involve at least one additional modality apart from the video signal used

in tandem towards a downstream task. O�en, there is a lack of annotated datasets that facilitate

multimodal tasks which contain more than 3 parallel modalities. One of the �rst 5-way parallel

multimodal videos dataset of instructional videos, the How2 dataset , was collected and released

by Sanabria et al. (2018). Figure 1.1 shows a sample video along with its various modalities from

the How2 dataset . Being the �rst-of-its-kind 5-way parallel dataset, it enabled the formulation

of various video understanding tasks, with a special focus on language-based understanding

such as summarization or translation. In this thesis, we present a series of tasks that can

be performed unimodally and multimodally with this data, which together, constitute a step

towards holistic Multimodal Video Understanding. Figure 1.2 gives an overview of the four

major tasks detailed in this thesis.

�e four main learning tasks for Multimodal Video Understanding covered in this thesis are

Speech Recognition, Speech Translation, Summarization, and Rationalization. �ese tasks are

ordered in terms of increasing task complexity and speci�c model architectures and constraints
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Multimodal Video Understanding

RationalizationSummarizationSpeech 
Translation

Speech 
Recognition

Figure 1.2: Overview of the Multimodal Video Understanding tasks in this thesis: Speech

Recognition, Speech Translation, Summarization, and Rationalization. �e tasks are ordered

in increasing level of complexity from le� to right.

are designed based on the task-speci�c complexities. Each of these tasks is performed uni-

modally as well as multimodally to investigate the in�uence of multimodal data for each task.

Despite the wide array of understanding tasks, the tasks in this thesis are language generation-

based, exploring video understanding from a speech-vision-language based generation per-

spective.

We start with a monotonically constrained audio-visual task, Video Speech Recognition (Palaskar

and Metze, 2018; Palaskar et al., 2018; Caglayan et al., 2019). Input speech and corresponding

transcription which is the output of speech recognition follow a strict monotonic constraint

where the temporal order of the speech is maintained in the temporal order of the transcription.

We refer to this task as the Monotonic Learning task.

Beyond Monotonic Learning, we can extend to a Speech Translation task, that maintains similar

inputs as the Speech Recognition task, but handles a non-monotonic constraint in the output.

�e translation outputs can be re-ordered (not following the same temporal constraint as the

input speech), and are language dependent. We refer to this type of learning as Non-Monotonic.
�e translation task in this thesis is on English and Portuguese (Palaskar et al., 2019b; Holzen-

berger et al., 2019).

Abstract Learning tasks are those that require abstraction of the inputs to generate the corre-

sponding outputs, for example, generating natural language summaries for videos, or video

question answering. O�en, these tasks involve compression, restructuring, and rephrasing of

input information to perform the necessary abstraction. �ese are comparatively complex tasks

than Recognition or Translation and focus on video-level non-trivial understanding. Video

Summarization (Palaskar et al., 2019a) and Video �estion Answering (Sanabria et al., 2019;

Palaskar et al., 2020) are the abstract learning tasks here.

Finally, to extend beyond these tasks, we address an Explanatory task that provides human

interpretable rationales for human actions in videos beyond summarizing or answering ques-

tions about them. Visual Commonsense Reasoning (Zellers et al., 2019) and Video �estion

Answering with Explanation (Li et al., 2018) tasks have been proposed in recent years but are

o�en modeled as a classi�cation problem of choosing a correct option from four options. �is
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formulation of the task has heavy annotation requirement and cannot be extended to open-

vocabulary free-form generation. To extend this task beyond these constraints, we use existing

datasets collected for classi�cation in a free-form natural language rationale generation se�ing

(Rationalization) as the �nal learning task in this thesis.

�e collection and release of the How2 dataset enabled the design and execution of many of

these tasks. It also led to the collection of a much larger scale dataset containing similar types

of videos (Miech et al., 2019). Using the How2 dataset , a huge e�ort was led by Specia et al.

(2020) in the Summer of 2018 at Johns Hopkins University, Baltimore, MD, to explore a one-
model-rules-all type of model for this multimodal understanding task. A lot of interesting

results emerged from this e�ort for each of the tasks above, one of it being that is it more ef-

fective to optimize towards each task individually than in a single large model (Specia et al.,

2020) with current technology. Very recently, researchers are exploring large-scale pre-training

using Transformer models (Vaswani et al., 2017) that try to build many-in-one latent represen-

tations by pre-training on auxiliary tasks such as classi�cation (Chen et al., 2019; Lu et al.,

2020; Nguyen and Okatani, 2019; Pramanik et al., 2019). Such models have not yet shown good

performance on natural language generation based tasks covered in this thesis. With further

developments in this direction, the one-model-rules-all approach might have success in the

future.

Overall, with this breakdown of Multimodal Video Understanding into various smaller tasks,

we aim to establish a structured pathway towards the bigger goal of “Can machines learn mul-
timodally from the world as humans naturally do?”
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1.1 �esis Overview

�esis Statement

Multimodal Video Understanding is a complex task, and various disconnected tasks have been
proposed within this domain. �is thesis ranks four such tasks according to the complexity and
shows how increasingly expressive models are needed to perform well on them. Our ordering is
intuitive to humans, and corresponds to the di�culty of human learning tasks.

Chapters & Contributions

I. Multimodal Learning Tasks. Multimodal Video Understanding is a complex task span-

ning numerous sub-tasks across the �elds of Computer Vision, Natural Language, and Speech

& Audio. To structure this learning problem in the context of this thesis, we identify four learn-

ing tasks, with gradually increasing complexities, and build multimodal fusion models based

on the nature of the tasks and modalities involved. In this chapter, we de�ne the four tasks,

the models used for each, and the modalities involved that guide the model developed.

II. Speech Recognition. Automatic speech recognition simulates the human process of lis-

tening with a neural network. Similarly, audio-visual speech recognition emulates watching

and listening synchronously. �is is a strictly monotonic task. We propose a multimodal fusion

model, Monotonic Input Fusion, based on the monotonicity and the time-scales of each three

modalities: speech, video, and text.

Contributions

1. [Finished Work] Audio-Visual Speech Recognition

We build a Monotonic Input Fusion model for end-to-end audio-visual speech recognition

that learn to use relevant information from each modality to improve speech recognition

performance. Using the multimodal fusion model, we demonstrate a relative improve-

ment of 9% in the word error rate over unimodal models. �e related publication is:

Palaskar et al. 2018 which was later extended by Caglayan et al. 2019.

2. [Finished Work] Acoustic-to-Word Speech Recognition

To fuse information in the semantic space, there is a di�erence of time-scale alignment

of the speech signal (speech frames), video signal (latent representations for word-level

labels) and the corresponding text sequence (characters). Towards bridging this gap, we

build speech recognition models that operate directly at the word-level labels to match

them with the visual representations. We build direct Acoustic-to-Word models that

align speech frames with corresponding word labels and evaluate their performance

against standard phoneme-based or character-based speech recognizers. �e related

publication is: Palaskar and Metze 2018.
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III. Speech Translation. Speech Translation is a non-monotonic task that converts an or-

dered set of speech signals to a re-ordered set of Portuguese translations in words. �e Acoustic-

to-Word model from previous chapter is useful to bring the time-scales of speech and text to

common word-level units here as well. Further, we also explore a semi-supervised learning

model for this task called the Latent Representation Fusion model to utilize the inherent su-

pervision provided by training across modalities. For translation, the Monotonic Input Fusion

model can also be used if a supervised translation model is required.

Contributions

1. [Finished Work] Contextual Acoustic Word Embeddings

We begin by building appropriate word-level representations from speech inputs. We

propose a Contextual Acoustic Word Embeddings (CAWE) model that uses the location-

aware a�ention (Chan et al., 2016) mechanism to localize and contextualize across all

speech frames of a word to a single representation. the corresponding acoustic word

embedding. Upon evaluation of these embeddings with their textual counterparts on

13 standard semantic similarity and classi�cation tasks, we �nd the acoustic embed-

dings perform equally or be�er than the textual word embeddings, showing the semantic

strength of the learned embeddings. �e corresponding publication for this is Palaskar

et al. 2019b.

2. [Finished Work] Multiview Learning for Multimodal Embeddings

�ese acoustic word embeddings are used in a multi-view representation learning setup

trained via Deep Canonical Correlation Analysis (Hotelling, 1992; Andrew et al., 2013)

to perform semi-supervised speech recognition and speech translation. We evaluate

these embeddings using a retrieval-based metric. Using the Latent Representation Fu-

sion model, the semi-supervised model achieves within 3% WER of the fully supervised

model for speech recognition, and within 7 BLEU points for speech translation. �e

corresponding publication for this is Holzenberger et al. 2019.

IV. Summarization & QA. Video Summarization is the task of generating a short infor-

mative textual summary highlighting the important contents of the video. For instructional

videos, the video by itself is very detailed. A textual summary that a�racts viewers based on

its focus on the most di�erentiating factor is more relevant than summarizing the di�erent

instructions of the video – here the summary acting like a textual teaser of the video itself. In

this chapter, we address this task of abstraction �rst. In the Video �estion Answering task,

we evaluate transfer learning capabilities of models trained on the How2 dataset (all tasks so

far are on How2 dataset ), on other open-domain datasets and tasks. One such dataset is the

Audio-Visual Scene-aware Dialog dataset (Alamri et al., 2019) based on the Charades dataset

(Sigurdsson et al., 2016) provides very similar types of modalities to the How2 dataset : speech,

video, summary, and question answer pairs, enabling transfer learning.

Contributions
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1. [Finished Work] Video Summarization

For the task of video summarization, our multimodal approach uses a Hierarchical Latent
Representation Fusion model to fuse visual and textual data for summarization, leading

to an absolute improvement 1.5 points in the content F1 score. We compare the pro-

posed model and task with numerous strong multimodal and summarization models

and �nd hierarchical model to perform best. Human evaluation on this novel task also

measures the quality of generated summaries on coherency, �uency, informativeness,

and relevance. Finally, we demonstrate the strong relevance of the visual signal for this

abstractive generation task. �e associated publication for this work is Palaskar et al.

2019a.

2. [Finished Work] Video �estion Answering

We explore various unimodal and multimodal transfer learning approaches for cross-

dataset learning between the How2 dataset and the Audio-Visual Scene-aware Dialog

dataset (Alamri et al., 2019) here. We cast the task as a multi-modal video summarization

problem, in which the input is video features along with concatenated with the textual

question, and the summary is the desired “answer”. We observed signi�cant consistent

gains by transfer learning for all unimodal tasks (Sanabria et al., 2019; Palaskar et al.,

2020) through transfer learning but did not observe signi�cant gain or drop in perfor-

mance for the multimodal task. With our best multimodal transfer learning model for

dialog question answering, we participated and ranked �rst in the 7
th

Dialog State Track-

ing Challenge, Audio-Visual Scene-aware Dialog track (Yoshino et al., 2018) on both au-

tomatic and human evaluation metrics. �e associated publications for this work are

Sanabria et al. 2019 and Palaskar et al. 2020.

V. Rationalization. As part of proposed work, we extend to a natural language rationale

generation task, also commonly known as commonsense reasoning. �is is also a multimodal

task with image or video for the visual modality. �is is a relatively new area of work compared

to other tasks covered in this thesis. �e goal for this task is to extend question answering by

providing supporting rationales for a given system-generated answer. �is task di�ers from

abstractive summarization as the information required for the rationale to be generated may

not be present in the input at all. Rather, it is a commonsense deduction based on the provided

context (for well-de�ned scope of the term “commonsense”).

Contributions

1. [Proposed Work] Interpretable Visual Commonsense Reasoning

For the Visual Commonsense Reasoning dataset collected by Zellers et al. 2019, we de-

sign a generation-based task for rationalization. In this work, we propose to study the

e�cacy of this generation task, and evaluate the dependency between the generated

answer and generated rationale.
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2. [Proposed Work] Improving Joint Answer and Rationale generation

Further, we propose to speci�cally build joint models designed for computational control

over the dependency between the generated answer and rationale for this task, called the

Hierarchical Interpretable Fusion model.

1.2 �esis Timeline

�esis timeline for 2021-2022

April 2021 • �esis Proposal

Now-May 2021 • Hierarchical Interpretable Learning for Rationale generation

May-Aug 2021 • Summer Internship at AI2 on Rationalization

Aug-Dec 2021 • Wrap up work on Rationalization

Jan-Feb 2022 • �esis Writing

Mar-Apr 2022 • �esis Defense



Chapter 2

Background and Review

Grounding or fusion in Multimodal learning research refers to anchoring one modality into

others for joint inference. It is the computational means towards the human quality of using

multiple senses at once, for example, watching, listening, and reading at once while watching

a movie (Rentfrow et al., 2011).

Strongly coupled grounding exhibits in tasks where a question asked can only be answered

through information contained in an image, e.g. Visual �estion Answering (Antol et al., 2015).

Various models have been proposed for such multimodal fusion and are o�en dataset and task

based. Weakly coupled grounding refers to inherent inferences drawn via available data, for

example, given an image of a person wearing a chef’s hat and an apron, we can understand the

potential genre of the video as cooking, baking, food, and scene as kitchen. Weak coupling is

o�en achieved through semantic or representation learning while strong coupling is achieved

through speci�cally designed modeling approaches such as bounding box grounding of an

image with the corresponding referring expression.

Lack of One Dataset �ere has been considerable progress made across multimodal learn-

ing tasks, however, these tasks are o�en uncorrelated and modeled in isolation. Towards the

human quality of using multiple senses at once, it might also help to model many of these

tasks together, or in some form of order where the models build o� of each other depending

on the task at hand. �ere is a lack of a single dataset that has many of these modalities which

could enable modeling various tasks together using a single dataset. �e How2 dataset was

proposed by Sanabria et al. in 2018 which enabled, at the time, large-scale grounding for var-

ious language-oriented multimodal tasks with a 5-way parallel dataset. �e following Section

describes this dataset and contrasts it with some of the previously published datasets and mul-

timodal tasks. More recently, Miech et al. collected a much larger version of a similar type of

data that contain 100 Million videos.

9
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Figure 2.1: How2contains a large variety of instructional videos with English transcriptions,

Portuguese translations, and English video summaries.

2.1 How2 Dataset

Multimodal sensory integration is an important aspect of human concept representation, lan-

guage processing and reasoning (Barsalou et al., 2003). From a computational perspective,

major breakthroughs in natural language processing (NLP), computer vision (CV), and auto-

matic speech recognition (ASR) have resulted in improvements in a wide range of multimodal

tasks, including visual question-answering (Antol et al., 2015), multimodal machine transla-

tion (Specia et al., 2016), visual dialogue (Das et al., 2017), and grounded ASR (Palaskar et al.,

2018).

Despite these advances, state-of-the-art computational models are nowhere near integrating

multiple modalities as e�ectively as humans. �is can be partially a�ributed to a lack of re-

sources that are pervasively multimodal: existing datasets are typically focused on a single

task, e.g. images and text for image captioning (Chen et al., 2015), images and text for visual-

question answering (Antol et al., 2015), or speech and text for ASR (Godfrey et al., 1992). �ese

datasets play a crucial role in the development of their �elds, but their single-task nature limits

the collective ability to develop general purpose arti�cial intelligence.

Sanabria et al. introduce How2, a dataset of instructional videos paired with spoken u�erances,

English subtitles and their crowdsourced Portuguese translations, as well as English video sum-

maries. �e pervasive multimodality of How2 makes it an ideal resource for developing new
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Figure 2.2: Modalities and possible tasks around How2: EN and PT respectively stands for

English and Portuguese.

models for multimodal understanding (see Figure 2.2). In comparison to other multimodal re-

sources, How2 is a naturally occurring dataset: neither the subtitles, nor the summaries have

been crowdsourced. Furthermore, the visual content is inherently related to the spoken u�er-

ances – How2 is a dataset of people showing other people how to accomplish tasks.

Figure 2.1 shows an example from How2 in which the presenter is explaining how to play a golf

shot. �e English speech and subtitles are aligned with a Portuguese translation. If one only

considers the text for this instance, it is unclear whether the “green” in the subtitles refers to

the color green (“verde”) or the golf playing surface (“green”)
1
, thus the textual context alone

is not enough to disambiguate the meaning of the subtitles. However, given some additional

visual context (green grass with a �ag pole), or the audio context (outside with the sound of

chipping a golf ball), or the sequential context of the video, multimodal models can integrate

multiple inputs to understand this u�erance.

�e value of additional modalities can also be demonstrated in the context of ASR. Object and

motion level visual cues can �lter out systematic noise that co-occurs with activities. Scene

information from an image can be used to learn a common auditory representational space

through recordings with di�erent environmental characteristics such as indoor vs outdoor

se�ings (Miao and Metze, 2016a). It has also been shown that entities in an image can dynami-

cally guide a speech recognition language model towards a more speci�c and relevant domain

(Gupta et al., 2017a).

�e How2 dataset consists of 79,114 English instructional videos from YouTube with English

subtitles. �e dataset consists of a total of 2,000 hours of video. Videos have an average length

of 90 seconds (how, 2018) and manual Portuguese translations. �is collection of videos

and translations constitutes a large-scale resource for testing a substantial part of multimodal

language processing methods in a real-world scenario.
2

1

At the time of writing, both Google Translate and Microso� Translator incorrectly translate this sense of green
as verde.

2

�e tools to download and construct the corpus are freely available at https://github.com/srvk/

how2-dataset.

https://github.com/srvk/how2-dataset
https://github.com/srvk/how2-dataset
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Videos Hours Clips/Sentences

300h train 13,168 298.2 184,949

val 150 3.2 2,022

test 175 3.7 2,305

held 169 3.0 2,021

2000h train 73,993 1,766.6 -

val 2,965 71.3 -

test 2,156 51.7 -

Table 2.1: Statistics of How2 dataset.

Statistic English Portuguese

Sentences 185K

Words 3.50M 3.30M

Words per sentence 18.9 17.9

Unique words 57.5K 74.9K

Table 2.2: Training set statistics for English and Portuguese: the number of unique words is

computed a�er tokenization.

An alignment process is needed to use the audio, the English subtitles, the Portuguese trans-

lations, and the video modality together. To this end, we �rst re-segment the English subtitles

into sentences using NLTK (Loper and Bird, 2002). �en, we force-align the speech signal at the

word level with an HMM-GMM pre-trained on the Wall Street Journal dataset. Finally, using

the timings provided by the word alignment, we create video clips aligned to the initial seg-

mented sentences. �is process splits a video into a sequence of clips, aligned with the speech

signal and the segmented sentences. Tables 2.1, 2.2 presents summary statistics of the 2000h
set and 300h subset: the val and test sets can be used for early-stopping, model selection and

evaluation; the held set is reserved for future evaluations or challenges. �e total set (i.e. 2000h)

contains around 22.5M words. �e tokenized training set of 300h subset contains around 3.8M

(43K unique) and 3.6M (60K unique) words for English and Portuguese respectively. Videos

are broken down into clips, as described above, with an average length of 5.8 seconds, or 20

words of spoken language.

Figures 2.3 show the LDA topic distribution and segment length analysis of the 300h subset of

the How2 dataset .

To estimate the topic diversity in How2 dataset, we ran a Latent Dirichlet Allocation (LDA) (Blei

et al., 2003a) over the English subtitles. �en, we de�ned 22 clusters by analyzing empirical

distances between videos and centroids. Finally, we applied a topic label to each cluster by

analyzing the top words. Figure 2.3 shows the distribution of all videos according to each

topic.
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Figure 2.3: LDA topic distributions for the 300h subset of the How2 data. �e labels are

manually annotated based on frequency of topic words. �e overall 2000h corpus exhibits

very similar characteristics.

Figure 2.4: Segment durations for the 300h subset. �e overall 2000h corpus exhibits very

similar characteristics.
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Features

�e following features are extracted and used as representations of the various modalities of

the How2 dataset .

Speech Features For speech, we extract 40-dimensional �lter bank features from 16kHz raw

speech signal using a time window of 25ms and an overlap of 10ms. 3-dimensional pitch fea-

tures are then concatenated to form the �nal 43-dimensional feature vectors. �e speech fea-

tures of a given video are further normalized using the mean and variance statistics from that

speci�c video.

Action Features (video-level) We extract action-level video features from a 3D ResNeXt-

101 (Hara et al., 2018) pre-trained on the Kinetics action recognition dataset (Kay et al., 2017)

which comprises 400 di�erent actions.

Object Features (frame-level) A ResNet-152 (He et al., 2016a) trained on ImageNet (Deng

et al., 2009b) which consists of 1000 categories ranging from animals, �owers to devices and

foods and so on.

Scene Features (frame-level) A ResNet-50 trained on Places365 (Zhou et al., 2017) for scene

recognition with 365 categories including, but not limited to: garden, valley, studio, theater and

o�ce.

Topic distribution �ere are gold-labels for category of each video in the content-provider

metadata that narrowly categorizes each video into 8 di�erent topics. �e most frequently

occurring category according to the metadata is Howto & Style (39.5%) but as we are already

dealing with instructional How-To videos, we wanted to look for more insight by obtaining

a �ner grained topic distribution. For this purpose, we clustered the entire English subtitles

of a video using Latent Dirichlet Allocation (LDA) (Blei et al., 2003b). Upon analyzing the

clusters with top words in each topic, inter-topic and intra-topic distances, we found that a

good representation for the 300h subset consists of 22 di�erent topics. We hand-labeled these

topics based on top words in each cluster. �e relative frequency of each topic is shown in

Figure 2.3.
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2.2 Direction of Research

Video understanding has been approached via various tasks, either unimodal or multimodal.

Most o�en, these tasks are uncorrelated and modeled in isolation. We propose to bring some

order to this task by exploring four tasks chosen based on the complexity. Across these tasks,

we demonstrate how increasingly expressive models are required to address the increase in

complexity and multimodal views depending on the task. Additionally, we focus on open-

vocabulary language generation tasks for possible extensions to domain-agnostic and large-

scale modeling.

Free-form language generation, especially for multimodal data, is a sequential generation task

conditioned on the various inputs as well as the text generated so far. O�en, the vocabulary

of these tasks are sub-words or word units that have an unrestricted vocabulary or a large

word vocabulary, facilitating open-ended generation. For language-oriented multimodal video

understanding tasks, free-form generation tasks model open-vocabulary generation beyond a

closed-set classi�cation tasks.

Instead of approaching video understanding as a set of various uncorrelated tasks, we order

the tasks in increasing order of complexity and develop model architectures accordingly. Based

on the task, the modality views get progressively complex. With the ordering presented in this

thesis, other video understanding tasks can be arranged based on the input modalities, or model

speci�cations, or task complexities
3
.

�is thesis explores grounding and multimodal learning with an emphasis on speech, audio,

language, and vision inputs, for downstream tasks ranging from simple monotonic speech

recognition to commonsense rationalization. In the following chapters, we �rst de�ne the four

tasks with the terminology, the models used, and the modality views, followed by a chapter on

each of the main tasks.

3

Tasks presented here are not comprehensive but cover a broad range of generation-based problems.



Chapter 3

Learning Tasks

Video Understanding is a broad �eld in itself spanning multiple tasks. In addition to this,

there is no standard theory to contain the term understanding across multiple research areas

in Machine Learning. Computer Vision research has approached this problem from the vision-

focused lens – action recognition, object detection, localization, etc. Language research has

approached this problem from the language generation angle – textual video summarization,

question answering, sparse and dense captioning, etc. Audio and Speech modalities are o�en

used as supplementary information for cross-modal learning as they are o�en tightly coupled

with the temporal visual stream in a video.

To contain this broad �eld into smaller components in this thesis, we provide a comprehensive

study with 4 main tasks that handle each of these three main modalities – audio, video, and

language. We pick these learning tasks based on the theory of multimodal learning in humans

(Rentfrow et al., 2011; Ha�ie, 2012; Brame, 2016), map them to existing machine learning tasks,

and order them in increasing order of complexity. �is order spans surface-level tasks such as

Speech Recognition or Translation and expands to interpretable and explanatory rationale-

generation tasks.

We also propose relevant model architectures based on the nature of the task (Monotonic, Non-

monotonic, Abstract, and Explanatory), complexity of the task (u�erance-level, video-level),

the modalities involved in each (audio, video, text), and the expected outputs (transcription,

translation, summarization, rationalization). In this chapter, we formally de�ne the various

terms used to construct this learning task structure, the four learning tasks, and the respective

models and modalities for each.

3.1 Terminology

Monotonic Tasks A functional constraint where the input time-series sequence and output

time-series sequence are dependent on each other. Between two ordered sets, a monotonic

16
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function preserves or reverses the order. For a given function, f such that f : X −→ Y is a

set function from a collection of sets X to an ordered set Y , then f is said to be monotonic if

whenever A ⊆ B as elements of X , f(A) 6 f(B).

Speech recognition is a speech-to-text task; given a window of speech frames (commonly

used smallest divisible feature of speech representation) it is converted to its correspond-

ing phonemes, characters, sub-words, words or word-pieces. �ese input speech frames are

mapped to the corresponding textual units following a strictly monotonic constraint.

Non-monotonic Tasks For Translation tasks where the output sequence may not follow

a strictly monotonic constraint. �e output text can be ordered depending on the language

being translated to. For speech recognition this is a strict condition across all languages, i.e.

whatever is spoken is transcribed with preserved temporal order from le�-to-right. For speech

translation, this constraint is language-dependent. Many languages exhibit re-ordering in the

translated text and the le�-to-right order is not preserved.

Abstract Tasks To contrast with Surface tasks, we de�neAbstract tasks as those that operate

at video-level time-scales rather than u�erance-level. To perform Abstract tasks, access to

video-level information across all modalities is necessary. �is information is compressed,

aggregated, restructured and rephrased as outputs in these tasks. Video summarization and

question answering are the two Abstract tasks covered in this thesis.

Explanatory Tasks Explanations or Rationales can be useful method of evaluating under-
standing beyond abstraction tasks. �ey also provide further support for system-generated

responses in video understanding tasks. Explanatory tasks refer to generation of interpretable

rationales for Abstract tasks. An example of such tasks is the Visual Commonsense Reasoning

(Zellers et al., 2019) or the Visual �estion Answering with Explanations (Li et al., 2018). For

Abstract and Explanatory tasks monotonicity is inherently not a constraint.
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3.2 Learning Tasks

�e four multimodal video understanding tasks covered in this thesis are:

I. Speech Recognition
Can we recognize what is being spoken? Does watching the video while listening help?

II. Speech Translation
Canwe recognize and translate what is being spoken? Canwe do it with lesser supervision?

III. Summarization & QA
If we have understood a video, can we summarize it? Can we answer questions?

IV. Rationalization
Can we provide reasoning for our answers?

�ese tasks are arranged in an increasing order of complexity. Speech Recognition is a mono-

tonic task i.e. the input speech sequence and the output text sequence are bounded by a time-

series monotonic constraint (le�-to-right). Video speech recognition is a multimodal equiv-

alent of this task where there is an added time-series video signal in the input. For Speech

Translation, there is a monotonic constraint to some extent, but the outputs are re-ordered se-

quences of input speech where the extent of re-ordering depends on the output language being

translated to. Speech Recognition and Translation can be thought of as surface tasks because

of this monotonic constraint.

In contrast with Recognition and Translation, the next learning tasks covered are Summariza-

tion and �estion Answering. In these tasks, video-level information needs to be compressed,

aggregated, rephrased, and restructured to generate natural language summaries or answer

questions based on the video. �ese tasks represent higher-level video understanding that ab-

stracts information and outputs it in the form required without any monotonic constraint as

in speech recognition or translation. Finally, we propose to cover the learning task of Ratio-

nalization that extends question answering to providing natural language reasoning for the

generated answers. Rationalization can be considered an explanatory task that provides inter-

pretable and observable rationales for a question answering task.

We design models for each of these tasks to satisfy these constraints and evolve the model as

necessary based on the task complexities and modalities involved. �ese are discussed in the

subsection below.
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Task Inputs Outputs

Speech Recognition Speech, Video Transcripts

Speech Translation Speech, Video, Transcripts Portuguese Transcripts

Summarization & QA Speech, Video, Transcripts, �estions Summary, Answers

Rationalization Video, �estions Answers, Rationales

Table 3.1: Task-speci�c multimodal views available for each task.

3.3 Models and Modalities

Across the tasks, there are multiple views of the multimodal data available. In Table 3.1, we

list the task-speci�c modalities (or views of a modality) available and note the ones used in the

input vs. output in this work.

Based on the complexities of the four tasks and the modalities involved in each, we design

speci�c multimodal fusion models. Across tasks, these models progressively get more complex

to handle the idiosyncrasies of each. Figure 3.1 shows an overview of all four models. �ese

models are explained in more detail in the respective Chapters.

I. Input Fusion
For the monotonic correlations between Speech and Text.

II. Latent Representational Fusion
For the non-monotonic, re-ordered sequences between Speech and Translations.

III. Hierarchical Latent Representational Fusion
For the video-level abstraction, compression, and re-phrasing of information as a Sum-

mary.

IV. Hierarchical Interpretable Fusion
For interpretable and explanatory Rationalization.

�e Input Fusion model is used for video speech recognition type tasks that have a monotonic

constraint. We fuse the modalities in the input (early fusion) to align video, speech, and text

time-scales. But this is a restrictive model with limited modeling capacity for more complex

tasks like translation where output is not strictly monotonic. For this reason, we extend the

model to a Latent Representational Fusion model where the two input modalities are fused in

the latent space instead of in the input. �ese fused multimodal representations are then used

for translation.
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Figure 3.1: Overview of the model complexities across four learning tasks: Input Fusion,

Latent Representation Fusion, Hierarchical Latent Representation Fusion, and Hierarchical

Interpretable Fusion.

Both speech recognition and translation operate at a �ner time-scale than summarization,

question answering or rationalization which are the abstract learning tasks. �ese tasks need

access to video-level information rather than u�erance-level like surface tasks. We design a

Hierarchical Latent Representation Fusion model for summarization and question answering

that provides this video-level control for abstractive tasks. Finally, we propose a Hierarchical

Interpretable Fusion model that extends the models so far to interpretable intermediate outputs

for explanatory tasks. An example of utility of this model is for visual commonsense reasoning

where for a given video and question, the model generates an answer as well as a rationale for

why that answer is the correct answer. �e Hierarchical Interpretable Fusion model is part of

proposed work.



Chapter 4

Speech Recognition

4.1 Introduction

Humans are capable of processing speech by making use of multiple sensory modalities. Lip

reading is a common example of audio-visual speech recognition by humans in noisy or distant

scenarios, with seamless adaptation and balance between lip-reading and hearing. Although,

beyond lip reading, the environment of source speech is o�en rich with semantic and/or acous-

tic context that helps us resolve ambiguities or to recall relevant words. In this Chapter, we

present a novel task of end-to-end audio-visual speech recognition, and follow it with large-

vocabular Acoustic2Word models that can directly map input speech features to word-units.

For audio-visual speech recognition, we propose to use multi-modal video information slightly

di�erently than to replicate lip-reading (Chung et al., 2017) within a neural network. We pro-

pose a multimodally adapted end-to-end speech recognizer to the visual semantic concepts

extracted from a correlated visual scene that accompanies some speech, for example in a “How-

To” instructional video. If we see a person standing in a kitchen, holding sliced bread, it is likely

that the person is explaining how to make a sandwich, and the acoustic conditions will be com-

parably clean. If a person is standing in front of an airplane, it is likely an informative video

of that plane, and happening outdoors, and hence with noisier acoustics. With such semantic

adaptation, we do not need constant access to the visual stream as is the case for lip-reading,

and visual cues from the recording environment (indoor vs. outdoor) or the interaction be-

tween salient objects (people, instruments, vehicles, tools and equipment) can be exploited by

the recognizer in various ways. We use the How2 dataset of open-domain instructional videos

for this task that are recorded in a varied acoustic environments, both indoors and outdoors

(Sanabria et al., 2018).

Transcription or sub-titling of open-domain videos is a challenging domain for Automatic

Speech Recognition (ASR) due to the data’s challenging acoustics, variable signal processing

and the essentially unrestricted domain of the data. Previous work has shown the visual chan-

nel – speci�cally object and scene features – can help to adapt the acoustic model (AM) and

21
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Input Fusion

XM1

XM2 Y1

Figure 4.1: Illustration of the Monotonic Input Fusion technique for multimodal adaptation.

language model (LM) of a speech recognizer (Miao and Metze, 2016b; Gupta et al., 2017b). Bas-

ing o� of the same hypothesis, we expanding this work to an end-to-end model that no longer

requires separate AM and LM adaptation, but can jointly adapt both within a single model.

Aligning speech to word-like units is a challenge (Kamper et al., 2016; Bengio and Heigold,

2014). As a �rst step towards this problem, we begin by training direct acoustic-to-word speech

recognition models with the aim to achieve useful speech embeddings from these trained en-

coders. In addition to providing a means to learn speech embeddings, Acoustic-to-Word recog-

nition provides a straightforward solution to end-to-end speech recognition without needing

external decoding, language model re-scoring or a lexicon. While character-based models of-

fer a natural solution to the out-of-vocabulary problem, word models can be simpler to decode

and may also be able to directly recognize semantically meaningful units. We analyze the en-

coder hidden states and the a�ention behavior, and show that the monotonically constrained

location-aware a�ention naturally represents words as a single speech-word-vector, despite

spanning multiple frames in the input. We �nally show that the Acoustic-to-Word model also

learns to automatically segment speech into words, a task that previously required careful hu-

man annotation. �is property of Acoustic2Word speech recognizers was necessary for our

work on semi-supervised Speech Translation in the following Chapter 5.

Monotonic Input Fusion Model

For given input modalitiesXM1 andXM2, under the assumption of monotonicity, we propose

an Input Fusion model that maintains input time-scale alignment between the modalities. In

the case of speech and vision as the input modalities, we condition every speech frame on the

corresponding visual representation to maintain monotonicity. Input Fusion is similar to stan-

dard Early Fusion in multimodal research with the main di�erence of fusion happening within

the model, hence model-dependent, instead of model agnostic as traditional Early Fusion. Fol-

lowing Input Fusion, any end-to-end model can be applied to convert given inputs to output

Y1. �is model is output-unit independent and can be applied to character-level or word-level

outputs.
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Chapter Structure

We begin this chapter by describing an end-to-end audio-visual speech recognition model ap-

plied to the How2 dataset . At the time (2017), end-to-end approaches for speech recognition

were fairly new. To demonstrate the quality of the trained models, we also evaluate them on

standard speech corpora and compare against prior work. We analyze the model success and

failure cases and highlight the di�erences in standard speech recognition corpora used to train

unimodal speech recognizers with multimodal speech corpora, and its corresponding e�ects

on recognition performance. In the following Section, we focus on building direct Acoustic-to-

Word Speech Recognizers that map acoustic features directly to semantically meaningful out-

put units. Word-level output units are a common target for text-based and vision-and-language

based downstream tasks. As the tasks described in this thesis o�en use all video modalities

at once, having a common target unit space is useful. Speci�cally, Acoustic2Word modeling

provides the necessary groundwork to perform Audio-to-Semantic Learning and Multiview

Learning used for Speech Translation in the following Chapter. In this Chapter, we describe

the methods necessary for Acoustic2Word modeling, and evaluate the models utility towards

learning speech embeddings. �e work presented in this chapter has been published previously

as conference papers in Palaskar et al. 2018 and Palaskar and Metze 2018.
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Figure 4.2: Audio-Visual Sequence-to-Sequence ASR.

4.2 Audio-Visual Speech Recognition

Following work builds on prior work on traditional models for audio-visual speech recognition

(Miao and Metze, 2016b; Gupta et al., 2017b) and presents �rst results on multi-modal adap-

tation Sequence-to-Sequence models (Cho et al., 2014; Bahdanau et al., 2014a). We present a

monotonic input fusion adaptation strategy �rst results with S2S model adaptation on audio-

visual data. �e ultimate goal of this work will be to view automatic speech recognition not

primarily as the speech-to-text task, but as a process which sub-titles multi-media material

removing repetitions, hesitations or corrections from spontaneous speech as required, much

like “video captioning” (Vinyals et al., 2015b). We show that multi-modal adaptation helps by

2% absolute improvement in the token error rate.

While multi-modal adaptation improves recognition in such noisy datasets, we see that there is

need for deeper insight into the S2S models for audio-visual speech recognition. �ese models

behave very di�erently with clean, prepared datasets like WSJ than with spontaneous, noisy

speech, How2. Ground truth references for the How2 data are less accurate than for WSJ; we

see that this in�uences model training. We present insights into the di�erences in the output

of these two approaches as these issues have not been addressed in prior work yet.

4.2.1 Model

We use the standard setup of an a�ention-based sequence-to-sequence (S2S) model (Chorowski

et al., 2014; Bahdanau et al., 2014b) applied to audio-visual inputs. �e encoder maps the input

acoustic features vectors x = (x1,x2, ...,xT ) where xi ∈ Rd into a sequence of higher-level

features h = (h1,h2, ...,hT ′). �e encoder is a multi-layer bi-directional Long Short Term

Memory (BLSTM) RNN that is structured as a pyramid by skipping every other frame between
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certain encoder layers for e�cient training. �is reduces the length of the input from T to T ′.

�is encoder network is analogous to the traditional acoustic model of an ASR. �e decoder

network is also an LSTM network that learns to model the output distribution over the next

target conditioned on sequence of previous predictions i.e. P (yl|y∗l−1, y∗l−2, ..., y∗0,x) where

y∗ = (y∗0, y
∗
1, ..., y

∗
L+1) is the ground-truth label sequence. �is decoder network is similar

to the language model in traditional ASR as it generates targets y from h using an a�ention

mechanism. �e a�ention model learns an alignment weight vector between the encoding h
and the current output of decoder yl. At each time step, the a�ention module computes a

context vector that is fed into the decoder together with the previous ground-truth label y∗l−1.

We implement the Global A�ention that learns a weighted context vectorWα calculated using

the source hidden state hs and the current target yt (Luong et al., 2015). �is context vector is

global as it always a�ends to all source states s′. We compute a variable-length alignment vec-

tor αt using: exp(hTt .Wα.hs) and this is normalized over all input s′ as

∑
s′ exp(h

T
t .Wα.hs′).

�e model architecture with a�ention is shown in the Figure 4.2.

We use 3 layers of 512 bidirectional LSTM cells in the encoder. We use SGD with learning rate

of 0.2 and decay of 0.9. We use curriculum learning (Bengio et al., 2009) for the �rst epoch to

speed up convergence. We note that our training process is much simpler than (Chan et al.,

2016; Chorowski and Jaitly, 2016; Bahdanau et al., 2016). �e decoder is made of 2 layers of

512 bidirectional LSTM cells each. For decoding, we use a beam size of 5. We do not use

any techniques for be�er decoding with WSJ as given in (Chorowski and Jaitly, 2016) but use a

length normalization with How2 data (Sanabria et al., 2018), to address the length distributions

variance shown in Figure 4.3. Training took 4 days with a TitanX GPU on the 90 h subset.

Experiments were performed using the OpenNMT toolkit (Klein et al.).

Input Fusion �e video adaptation technique we use with S2S is early fusion where 100 d

visual features are concatenated with 120 d audio features giving 220 d vector for each frame.

Our experiments with early fusion show that S2S bene�ts with this technique while CTC or

DNN (Miao and Metze, 2015; Palaskar et al., 2018) does not. Caglayan et al. 2019 extend the

experimentation of S2S adaptation to other fusion strategies and �nd that ensemble of various

ASR models performs best.

4.2.2 Experimental Setup

We conduct our experiments on two data-sets, the Wall Street Journal (WSJ, SI-284, LDC93S6B

and LDC94S13B), and the How2 audio-visual dataset (Sanabria et al., 2018). �e How2 cor-

pus consists of English language open-domain instructional videos that explain speci�c tasks

like baking a cake, or nutrition habits, and have been recorded in various environments in-

doors and outdoors (like kitchen, or garden), usually with a portable video recorder. Ground

truth transcriptions of these videos have been created by re-aligning provided sub-titles, which
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Figure 4.3: Length Distribution for the How2 and WSJ Train sets.

sometimes are mis-matched because of missed phrases, word repetitions, hesitations, and other

noise and punctuation that hasn’t been transcribed.

We use the 90 and 480 hour subsets of the How2 data and 87 hours of WSJ, and extract 40-

dimensional MEL �lter banks, with a step size of 30 ms, 3-fold oversampling of the data at 0, 10,

and 20 ms o�sets, and stacking 3 neighboring frames together, resulting in a 120-dimensional

input vector. �e 90 h subset of How2 has been selected randomly. We have a separate 4 h test

set. 5% of the training data is used as dev set
1
. For WSJ, we use the eval92 test set. Both models

are character-based with 43 labels/tokens: 26 alphabets, 10 digits, and special symbols for {‘.’,
‘”, ‘-’, ‘/’}, space, start and end of sentence.

Figure 4.3 shows the length distributions for the How2 and WSJ train sets. �is shows that for

“open-domain” speech data, the distribution is less normalized when compared with prepared

datasets.

Visual Features �e visual features used here are the same as those in prior work with this

dataset (Gupta et al., 2017b). We extract object and place/scene features from pre-trained CNNs

and perform dimensionality reduction to obtain 100 dimension features. As described above,

the data contain indoor and outdoor recordings of instructional videos where object and place

features are most relevant. We use these features to infer acoustic and language information

from the scene where the u�erance has been recorded.

4.2.3 Results

In Table 4.1, we present the e�ect of visual adaptation on the Token Error Rate (TER) for

speech models. Adaptation with visual features helps improve the absolute TERs by 1.6% using

the S2S model. Using length norm described below, TER further improves to 2%. �is is a

signi�cant improvement for speech recognition with S2S models. �e test set named ‘dev’

1

�ese are early subsets of the How2 datasets created and used in prior work (Miao and Metze, 2016b; Miao

et al., 2014). �e o�cial release of the How2 dataset (how, 2018) processed these initial splits before release.
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is a tougher set than the ‘test’ set in the How2 dataset . �is work was extended by Caglayan

et al. to other monotonic fusion approaches for S2S models, namely the Visual Adaptive Fusion

method leading to an absolute improvement of 1.4% word error rate, which is a similar degree

of improvement as with the Input Fusion model.

TER dev TER test

Audio-only 18.4 16.3

Audio-Visual 16.8 15.7

Table 4.1: Results for Audio-only and Audio-Visual adaptation with the How2 data.

S2S Model

WSJ 7.9

How2 15.3

Table 4.2: TER of the S2S model on WSJ (eval92) and How2 (test set).

In Table 4.2, TER with S2S on WSJ is a strong baseline compared to prior work (Bahdanau et al.,

2016; Kim et al., 2017). We see a huge disparity in ASR for clean prepared data (WSJ) and real

application data (How2) as discussed with Figure 4.4.

Spoken now it does only say for do- or doesn’t even say for

dogs or cats it’s neither

Reference now doesn’t even say dogs or cats it says neither

Audio-only S2S now it doesn’t we say for a dog or that use a dogs or

cats so is night or

Audio-Visual S2S now it doesn’t leave safer dog or it does use a dogs

or cat so in night or

Table 4.3: Typical transcription on How2 test set: S2S model keeps to the style of the reference

which is an abstraction of the spoken content. Currently, there is li�le semantic di�erence

between regular and adapted (AV) S2S output.

Figure 4.4 compares reference length to hypothesis length for 40 short and long WSJ and

How2test u�erances. On WSJ, the range of lengths of short and long u�erances are similar,

and reference and hypothesis follow each other closely. On How2, hypothesis prediction is

very unstable and the model makes a lot of mistakes, even breaks completely at times. Length

of the hypothesis is greater than the length of reference for short u�erances, while it is lesser

for longer u�erances. As seen from the example in Table 4.3, the output of the S2S model

is much closer to the reference transcript. �e model learns a form of length normalization

over the entire dataset hence performs badly on short and long u�erances. We use the length

normalization factor during decoding to stabilize the output of the S2S model and get absolute

improvements of 2% (dev) and 1% (test) for the non-adapted case, which is slightly be�er than

the adapted case and shows that adaptation stabilizes model performance.
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Figure 4.4: Length normalization by S2S for WSJ and How2

4.3 Acoustic-to-Word Speech Recognition

4.3.1 Model

Our S2S model is similar in structure to the Listen, A�end and Spell model (Chan et al., 2016)

which consists of 3 components: the encoder network, a decoder network and an a�ention

model. �e di�erence between the S2S model used for audio-visual speech recognition de-

scribed earlier is the type of a�ention mechanism used: location-aware a�ention. In this work,

y∗i ∈ U can be a token from a character, sub-word or word vocabulary.

Location-awareAttention We use a location-aware a�ention mechanism (Chorowski et al.,

2015) that enforces monotonicity in the alignments, which may be bene�cial for speech recog-

nition. To do so, the location-aware a�ention applies a convolution across time to the a�ention

of previous time step using trainable �lters. �is convolved a�ention feature is used for cal-

culating the a�ention for the current time step. We apply a one-dimensional convolution K
along the input feature axis t to get a set of T features {f}Tt=1 described as follows:

{f}Tt=1 = K ∗ al−1
elt = gT

tanh (Lin(yl−1) + Lin(h) + LinB(ft))

alt = So�max({elt}Tt=1)

where al−1 = [al−1,1, ..., al−1,T ]
T

, g is a learnable vector parameter, {elt}Tt=1 is aT -dimensional

vector, Lin() is a linear layer with learnable matrix parameters without bias vectors, LinB() is

a linear layer with learnable matrix and bias parameters.

�e S2S model is trained by optimizing the cross entropy loss function which maximizes the

log-likelihood of the training data. We use beam search to perform inference. We also apply
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unigram label smoothing that distributes the probability of most-probable token to prevent the

over-con�dence of the model (Pereyra et al., 2017; Chorowski and Jaitly, 2016).

4.3.2 Experimental Setup

We use the standard 300-hour Switchboard corpus (SW, LDC97S62) (Godfrey et al., 1992) which

consists of 2,430 two-sided telephonic conversations between 500 di�erent speakers and con-

tains 3 million words of text. We evaluate on the HUB5 eval2000 (LDC2002S09, LDC2002T43)

containing Switchboard subset similar to training data and CallHome (CH) subset that is a

tougher set. �ere are 196,656 total u�erances out of which we use the �rst 4,000 u�erances

as a validation set. Our input features are 80-dimensional log-mel �lter banks normalized with

per-speaker mean and variance. We also use 3-dimensional pitch features.

We present three di�erent types of target units for speech recognition: characters, Byte-Pair

Encoding units (BPE) (Gage, 1994; Sennrich et al., 2016) and words. BPE units are generally

longer than characters and shorter than words. �e character vocabulary is made of 46 units

containing 26 le�ers, 10 digits, and other frequently occurring special symbols. We use 12k

BPE operations to get comparable vocabulary with word level models. We �nally present

a large-vocabulary model made of all 29,874 unique words in the Switchboard set. �e vo-

cabularies also contain non-language special symbols that denote noise, vocalized-noise and

laughter. We train character and word level RNN language models on the Switchboard + Fisher

(LDC2004T19) (Cieri et al., 2004) transcripts as is the common practice for this data.

Our encoder consists of 6 layers each with 320 bi-directional LSTM cells (Hochreiter and

Schmidhuber, 1997). �e second and third layer skip every other frame to get a reduction

of T/4 in input frames. We use the AdaDelta (Zeiler, 2012) optimizer. �e location-aware at-

tention convolution uses 10 �lters with width 100. We use a projection layer of 320 dimensions

a�er each layer of the encoder. Our decoder is a single layer LSTM containing 300 cells. We

initialize all parameters uniformly within [−0.1, 0.1] unless otherwise speci�ed. We use uni-

gram label smoothing with weight 0.05. �e beam size used for all experiments is 10. We use

the ESPnet toolkit (Kim et al., 2017; Watanabe et al., 2017) for our experiments.

4.3.3 Results

We �rst compare a character-level S2S model with previously published Connectionist Tempo-

ral Classi�cation (CTC) (Graves et al., 2006) model, both of which were considered the state-of-

the-art model approaches at that time. Character-level evaluation and comparison will provide

a be�er perspective on S2S and CTC comparison, as well as the corresponding di�erence in

performance when the vocabulary is changed to word-level. Note that character-level model-

ing was the widely-used vocabulary at the time of this publication.
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Our models obtained the best Word Error Rate (WER) of that time in both SW (5% absolute

improvement without LM) and CH test sets among the previous S2S models (Lu et al., 2016;

Zenkel et al., 2017; Toshniwal et al., 2017). We also perform be�er than previous CTC models

(Hannun et al., 2014; Zweig et al., 2017; Audhkhasi et al., 2017) in the SW test set and the

di�erence in the CH set is minor. Furthermore, we observe a 13% relative improvement in our

results on the SW subset by using an RNNLM with shallow fusion (Gulcehre et al., 2015) which

is trained at the character and word level. �e best absolute WER at character-level modeling

is 15.6% on the SW test set and 31% on the CH test set. Following the publication of this work,

most recently, the state-of-the-art on this dataset has been reduced further to 5% and 8%

respectively (Chan et al., 2021) by training on more data and by using large-scale models with

a variety of training tricks (Park et al., 2019; Baevski et al., 2020) developed over the last few

years. �is latest result uses more than 5000 hours of speech for training as compared with

300 hours used in this work.

Next, we compare the A2W models with prior work using BPE and word units. We start by

restricting the vocabulary to words occurring at least 5 times (Word >= 5) in the training set

before moving on to complete vocabulary A2W modeling. Word >= 5 leads to a vocabulary

of 11069 words with an OOV rate of 2.3% for the CH test set. �is model leads to an absolute

WER of 23% on SW and 37.2% on CH. To address this high OOV rate, we try to match the word

vocabulary by an equivalent BPE vocabulary of 12k merge operations. �is model performs

be�er than the word model as expected: 21.3% and 35.7% respectively. We also experiment

with initializing the word>=5 model with a pretrained character model (similar to Audhkhasi

et al. 2017) for be�er convergence and observe slight improvements: 22.4% and 36.1%.

We proceed to the large vocabulary speech recognition model made of all the words in the

training set. �is model performs be�er than our previous word models which may be due to

absence of the frequently occurring OOV token. We get an absolute improvement of 4% in

SW and 11% in CH subsets over the previously published number on such large vocabulary

recognition (Lu et al., 2016) with or without a language model. Similarly, Chen et al. also

perform large vocabulary recognition and our model shows 9% and 4% absolute improvement

on the two test sets respectively.

Ideally, S2S A2W model does not need a separate language model as it directly predicts a

sequence of words using the decoder LSTM. But as the LM is trained on a larger text corpus,

we integrate it to check its e�ect and do not observe improvements as large as the character

model.

Our work is not directly comparable with other S2S or CTC models that use BPE units or a

smaller vocabulary (Audhkhasi et al., 2017; Zeyer et al., 2018) as the goal here is whole-word

recognition to predict semantically meaningful units. �is work is necessary for the Audio-

to-Semantic learning and consequently Speech Translation work described in the following

Chapter 5. With these results, we demonstrate our character-level and word-level models per-

formed well as compared to the prior work published at that time. Irrespective of that, absolute

WER performance is not the focus of this work. In the sections below, we describe the bene�ts
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of an A2W model for automatic speech segmentation and towards learning contextual acoustic

word embedding.

4.3.4 Automatic Word Segmentation

In the following two sections we analyze the behavior of S2S models, speci�cally for the A2W

recognition task. We analyze a�ention in the decoder and the hidden representations of the

encoder.

HumanAnnotatedWordBoundaries in SWBD.NXT Switchboard Annotations (LDC 2009T26)

are a subset of the Switchboard corpus (LDC97S62) containing 1 million words that were anno-

tated for syntactic structure and dis�uencies as part of the Penn Treebank project. �is subset

contains human annotated word-level forced alignments that mark the beginning and end of

each word in the u�erance in time
2
. In the following sections, we analyze a�ention behavior

of the A2W model and the speech-word-vectors obtained from it. To do this analysis, we need

groundtruth word-level segmentations and this corpus is a good match.

From NXT Switchboard, we choose those u�erances that are also present in the Treebank-

3 (LDC99T42) corpus. �e speech in this corpus is re-segmented to match the sentences in

Treebank-3. We �lter out u�erances with less than 3 words resulting in 67,654 u�erances in

total. �is is divided into 56,100 train, 5,829 validation and 5,725 test sets. We train a separate

A2W model with this data using the same setup without using any explicit information about

word-segments. We only train on this dataset to avoid introducing a more variability in our

analysis, i.e. are the segmentations due to our model or due to training with a larger corpus

(SW 300h)? In our setup, we split compound words into two words (eg. they‘re −→ they and

‘re).

Attention Behavior

In Figure 4.5 we plot the a�ention of a sample u�erance from our validation set of the corpus.

We notice that the a�ention is very peaky and focuses only on certain frames in the input

although generally a word spans multiple input frames.

To understand this behavior of the model, let us revisit the location-aware a�ention. �e

location-aware a�ention is useful in speech to enforce a monotonic alignment between source

and target. It does so by convolving the previous a�ention vector along input time-steps and

feeding it as another input parameter while calculating a�ention of the current time step. �is

way, the model is informed where to pay a�ention “next” and would mostly look in the “future”

to make a prediction.

As this model is trained towards word-units and the a�ention is focused only on certain frames,

we speculate that the hidden states corresponding to those frames are the speech-word-vectors

2http://groups.inf.ed.ac.uk/switchboard/structure.html

http://groups.inf.ed.ac.uk/switchboard/structure.html
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Figure 4.5: A�ention visualization for a sample u�erance from the validation set shows highly

localized a�ention for a word-level S2S model

for those words. Here, we are able to extract speech-word-vectors from an end-to-end model

trained for direct word recognition without the need of any prede�ned forced-alignments. �e

size of these embeddings is equal to the number of RNN cells in the last layer of the encoder.

Automatic Segmentation of Speech into Words

Given that the a�ention is highly localized, we a�empt to quantify whether the a�ention

weights corresponded to actual word boundaries. From the Switchboard NXT dataset, we

chose all u�erances (train, validation and test) for which we have 0% WER during testing. 39%

of the total u�erances have 0 WER. We perform decoding with beam size 1 here. We con-

verted the human-annotated forced-alignments to their corresponding frame numbers using

the 10ms frame rate of our model. �e predicted frame number is calculated from the a�ention

distribution shown in Figure 4.5 as follows. �e input frame with the max a�ention probabil-

ity is chosen as the predicted frame for the word. �e frame error is calculated at each word

level by taking an absolute di�erence between the predicted and grouthtruth frame number.

A positive di�erence means the predicted frame was a�er the groundtruth alignment, and a

negative di�erence means that it was before. We average this frame error for all words in all

u�erances (171073 words). An example of this computation is
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Avg. Frame Error
Train Val Test

W/o Last Word - Mean 0 -0.08 -0.01

W/o Last Word - Std Dev 3.7 3.3 2.0

All Words - Mean 0.4 0.3 0.3

All Words - Std Dev 10.1 9.8 10.5

Table 4.4: Average frame error mean and standard deviation (std dev.) between groundtruth

forced-alignments and S2S word segment prediction

Predicted = [988, 1008, 1012, 1044, 1092]

Groundtruth = [988, 1005, 1013, 1042, 1100]

and Frame Error = [0,+3,−1,+2,−8]

�e a�ention weights for the last word predicted in the sequence is o�en most erroneous.

As an example, in Figure 4.5 we see that “know”, the last word, has a distributed a�ention

weight, and has the least probability value (approximately 0.2) compared to other words. For

be�er understanding, we also compute frame errors without considering the last word of every

u�erance.

We compute the mean and standard deviation of frame errors for all words. During training,

we use a pyramidal encoder that reduces the input frame lengths by a factor of 4. Hence,

while computing mean and standard deviation of frame errors, we scale them by 4 as well

for fair comparison. �e standard deviation of frame error without including last word is 3.6

frames a�er the groundtruth. For a word-based model, this is an encouraging result as usually

a character unit spans 7 (or 1.75 frames a�er a pyramidal encoder) and a word would span

many more.

Why does attention focus on the end of word? �e optimization task in A2W recognition

is to map a sequence of input frames (usually larger number of input frames than in character

or BPE prediction models) to a sequence of target words. During training, the model learns

where word boundaries occur by recognizing the a�ention distribution that leads to highest

probability of generating the correct output. �e bi-directional LSTM in the encoder has access

to the past as well as future input. �erefore, the encoder learns to look into the future to

recognize where a di�erent word is beginning, and the BLSTM would hold richest embeddings

in the unit corresponding to each of frame of the current word. We investigate the encoder

embeddings in the next section in more detail. It is also important to note that the location-

aware a�ention constrains the model to only look into the future, and not the past, which

would push the boundaries towards word ends rather than beginnings. Hence, the a�ention

mechanism learns to focus mostly on the word boundaries.
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Figure 4.6: Encoder hidden state visualization for WSJ (acoustically clean data) and SWBD

(acoustically noisier). Visualization shows encoder activations across input time frames.

We obtain a context vector from the a�ention mechanism that is a weighted sum of the encoder

hidden states. Following this peaky nature of the a�ention mechanism, we expect to see certain

pa�erns re�ected in the encoder embeddings. �is is explored in the following section.

Speech Embeddings

We train a similar A2W model on the Wall Street Journal corpus (WSJ, LDC93S6B and LDC

94S13B) which comprises about 90 hours of read speech in clean acoustic environments with

a close-talk microphone. �is dataset has about 300 di�erent speakers in the train, validation

(dev93) and test (eval92) sets. WSJ is sampled at 16kHz while SWBD is sampled at 8kHz and

we upsample SWBD to 16kHz for implementation reasons. We bring the readers a�ention to

these major di�erences in acoustic and speaker variability and domain of the data in WSJ and

SWBD. In Figure 4.6 we visualize the encoder hidden states for sample u�erances from the

validation sets of WSJ (4k8c030h) and SWBD (same as in Figure 4.5). We train a WSJ model to

compare hidden state activations of the noisier SWBD dataset with a clean WSJ dataset as we

expect the activation pa�erns to be clearer and more interpretable in the cleaner dataset. �e
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hidden state dimension here is same as the number of BLSTM cells in the last encoder layer

(320D). For this visualization, we sort the hidden states of the encoder in an ascending order of

total activation over time. We use a tanh non-linearity hence all values range from -1 to +1. We

note that there are three types of pa�erns to observe in these activations: 1) stable horizontal

lines, 2) disruptions, and 3) vertical dashed-line pa�ern across encoder hidden states (Y-axis)

within the disruptions. Pa�ern 3 is easier to notice in the WSJ activations.

Upon listening to these u�erances, we found that stable horizontal lines (pa�ern 1) corresponds

to silence in the u�erance, while disruptions (pa�ern 2) corresponds to the speech. We observe

similar pa�erns identifying speech and non-speech in both WSJ and SWBD. From this, we un-

derstand that the model has learned to detect and segment pauses in speech. As WSJ is the

acoustically cleaner corpus with less variability, “silence” acoustics are stable and repetitive

throughout, which is what we observe in the beginning, middle and end of the WSJ u�erance–

while the SWBD “silence” activations look di�erent. In WSJ, we can further identify multiple

vertical dashed-line pa�erns across all encoder hidden states (i.e. Y-axis; pa�ern 3). �is pat-

tern is formed by encoder units turning on and o� (+1, -1) when a word boundary is reached.

�is particular WSJ u�erance has 15 words and we observe 15 vertical dashed-line pa�erns in

the activations. �is further reinstates that we are able to represent multiple frames of speech

using single 320D speech-word-vectors. Pa�ern 3 is tougher to spot in SWBD comparatively

but still noticeable; it might need more training data or be�er regularization with this data to

obtain similar properties as the WSJ model.
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4.4 Chapter Conclusion

We present a monotonically motivated Input Fusion model for audio-visual end-to-end speech

recognition. We establish the e�cacy of this model on a standard speech recognition corpus,

WSJ, and extend it to a new open-domain noisy multimodal speech recognition dataset, How2.

We �nd signi�cant gains of over 1.6% absolute improvement in the token error rates with the

audio-visual model. We delve deeper into the modeling capabilities and limitations of this

model by analysis of the How2 dataset in comparison with standard, clean, WSJ corpus. We

extend this analyses to compare the failure cases of model generated hypotheses for the noisy

How2corpus compared with the WSJ corpus.

To extend this model to end-to-end word-level speech recognition we build direct Acous-

tic2Word (A2W) models. �e motivation for this word-level speech recognition is to perform

direct audio-to-semantic tasks addressed in further chapters. We build strong A2W models,

comparing on standard widely-used speech corpora. We further investigate the power of

these direct A2W models by analyzing monotonic location-aware a�ention mechanism and

�nd that the model learns to automatically segment speech frames into individual words, lead-

ing to clearly identifying acoustic word embeddings. In the next chapter, we make use of these

inherently learnt speech embeddings for semi-supervised learning.



Chapter 5

Speech Translation

5.1 Introduction

In this Chapter, we present semi-supervised multimodal Speech Translation with the limited

supervision obtained through multimodal inputs. Speech Translation is a language-dependent

re-ordering task where the input time-series speech sequence is converted to the corresponding

re-ordered text sequence. Speech Translation has been approached by a cascaded pipeline

approach with speech-to-text followed by text-to-text translation (Pham et al., 2019; Wu et al.,

2019; Inaguma et al., 2020) or via end-to-end models (Inaguma et al., 2020; Guo et al., 2020),

all in a fully supervised se�ing. Here, we utilize the inherent supervision available through

multiple views of the same data to build semi-supervised speech translation systems that �rst

learn multimodal representations, that are then used for a retrieval based speech translation

task.

Semi-supervised learning is preferred over fully supervised learning in scenarios where data

annotation is limited, expensive, or unavailable. In contrast, access to multiple views of the

same data, or multimodal data, is more readily available. Speci�cally, data from instructional

videos such as the How2 dataset is available in large quantities (Sanabria et al., 2018; Abu-El-

Haija et al., 2016; Miech et al., 2019). As described earlier in Chapter 2, video data o�en comes

with multiple views of the same data point: the speech, audio, video itself, English transcrip-

tion, metadata, and possibly, auto-generated transcriptions in other languages. Using well-

established representation learning method for such multiview data, Cannonical Correlation

Analysis (CCA) (Hotelling, 1992), we apply it to such noisy large-scale data and demonstrate

its utility in downstream tasks. �is method is universal and can be applied to multiple down-

stream tasks such as speech recognition, text translation, and speech translation.

Apart from the noisiness of the data, application of this technique to such open-domain data

involves solving multiple challenges before it can be applied to Speech Translation. CCA re-

quires initial independently learned representations for all modalities. For speech/audio, no

such method exists to learn contextual acoustic embeddings at scale. Prior work required

37
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clean annotated word boundaries or word-level speech (He et al., 2016b; Kamper et al., 2016).

Secondly, the individual modality representations need to be aligned at the same time-scale,

i.e. character embeddings, word embeddings, sentence embeddings, etc. Speech is o�en at

phoneme or character-levels, text is at word-level, and vision can be at a word-level as well

(annotated object/scene/action labels). To address both these issues, we develop a method to

learn contextual acoustic word embeddings that bring speech/audio to the word-level embed-

dings.

Using the model described in Section 4.3, we build a Contextual Acoustic Word Embedding

model that does not require manual alignment of word boundaries, but can instead recognize

them on-the-�y (Palaskar and Metze, 2018). With this automatic segmentation, we can now

extract the useful speech representations for each word (Palaskar et al., 2019b). With this

technique, we bring the speech, text, and visual modality views to word-level latent alignment.

�ese modality-speci�c representations are then used for further joint multi-view multimodal

representation learning.

We explore an advanced, correlation-based representation learning method, Deep Generalized

Canonical Correlation Analysis (DGCCA) (Arora and Livescu, 2013), on a 4-way parallel, mul-

timodal dataset, and assess the quality of the learned representations on retrieval-based tasks.

We show that the proposed approach produces rich representations that capture most of the

information shared across views. Our best models for speech and textual modalities achieve

retrieval rates from 70.7% to 96.9% on open-domain, user-generated instructional videos. �is

shows it is possible to learn reliable representations across disparate, unaligned and noisy

modalities, and encourages using the proposed approach on larger datasets.

Latent Representation Fusion Model

�e Input Fusion model provides an u�erance-level monotonic adaptation with the input modal-

ities XM1 and XM2. We expand this model from strictly monotonic input fusion to a latent-

space fusion, LY1. �e Latent Representation Fusion model relaxes the monotonic constraint

allowing fusion for re-ordering tasks like speech translation. For speech translation, the mono-

tonicity between input speech and output translations is language dependent, and enforcing

strict monotonicity (for e.g. via input fusion) is not optimal. �e Latent Representation Fusion

model maintains the time-resolution of input speech (and video) at the u�erance-level, and

has the �exibility of output re-ordering in the latent space which was not possible in the Input

Fusion model.

�e Latent Representation Fusion model, is further expanded to perform semi-supervised mod-

eling by leveraging information from the multiple multimodal views available. Using the

DGCCA model for representation learning mentioned above, we train generalized multimodal

representations that fuse the various input multimodal views into a single latent representa-

tion LY1. We use retrieval-based evaluation for this model that also performs the downstream
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Figure 5.1: We build on top of the existing Input Fusion model for semi-supervised Speech

Translation. We present the Latent Representation Fusion model that learns a multimodal

latent representation LY1, and uses that via retrieval for downstream tasks.

task; given the generalized multiview multimodal representation LY1, we retrieve the corre-

sponding translation representation Y retrieval
1 .

Chapter Structure

�e work in this Chapter is structured in two main parts: (1) learning contextual acoustic

word embeddings (a novel method to represent speech by word-level semantically meaningful

embeddings), followed by (2) using these embeddings to perform semi-supervised multimodal

Speech Translation. We begin by describing the approach for Audio-to-Semantic learning, the

model used, and the evaluation of the quality of learned embeddings on 16 benchmark embed-

ding evaluation tasks. In the following Section, we describe the multiview learning method

for semi-supervised Speech Translation. �is work presents one of the �rst applications of

multiview learning to open-domain video data, the How2 dataset . We �rst perform implicit

evaluation of the e�ectiveness of the proposed approach on such data, followed by explicit

evaluation on the Speech Translation downstream task. �e work presented in this chapter

was published in Palaskar et al. 2019b and Holzenberger et al. 2019.
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5.2 Contextual Acoustic Word Embeddings

5.2.1 Audio-to-Semantic Learning

�e task of learning �xed-size representations for variable length data like words or sentences,

either text or speech-based, is an interesting problem and a focus of much current research.

In the natural language processing community, methods like word2vec (Mikolov et al., 2013),

GLoVE (Pennington et al., 2014), CoVe (McCann et al., 2017) and ELMo (Peters et al., 2018)

have become increasingly popular, due to their utility in several natural language processing

tasks. Similar research has progressed in the speech recognition community, where however

the input is a sequence of short-term audio features, rather than words or characters. �erefore,

the variability in speakers, acoustics or microphones for di�erent occurrences of the same word

or sentence adds to the challenge.

Prior work towards the problem of learning word representations from variable length acoustic

frames involved either providing word boundaries to align speech and text (Chung and Glass,

2018), or chunking (“chopping” or “padding”) input speech into �xed-length segments that

usually span only one word (Kamper et al., 2016; Bengio and Heigold, 2014; Harwath and Glass,

2015; He et al., 2016b). Since these techniques learn acoustic word embeddings from audio

fragment and word pairs obtained via a given segmentation of the audio data, they ignore the

speci�c audio context associated with a particular word. So the resulting word embeddings do

not capture the contextual dependencies in speech. In contrast, our work constructs individual

acoustic word embeddings grounded in u�erance-level acoustics.

We present di�erent methods of obtaining acoustic word embeddings from an a�ention-based

sequence-to-sequence model (Sutskever et al., 2014a; Chan et al., 2016; Chorowski et al., 2015)

trained for direct Acoustic-to-Word (A2W) speech recognition (Palaskar and Metze, 2018). Us-

ing this model, we jointly learn to automatically segment and classify input speech into in-

dividual words, hence ge�ing rid of the problem of chunking or requiring pre-de�ned word

boundaries. As our A2W model is trained at the u�erance level, we show that we can not only

learn acoustic word embeddings, but also learn them in the proper context of their containing

sentence. We also evaluate our contextual acoustic word embeddings on a spoken language

understanding task, demonstrating that they can be useful in non-transcription downstream

tasks.

Our main contributions are the following: (1) We demonstrate the usability of a�ention not

only for aligning words to acoustic frames without any forced alignment but also for construct-

ing Contextual Acoustic Word Embeddings (CAWE). (2) We demonstrate that our methods to

construct word representations (CAWE) directly from a speech recognition model are highly

competitive with the text-based word2vec embeddings (Mikolov et al., 2013), as evaluated on

16 standard sentence evaluation benchmarks. (3) We demonstrate the utility of CAWE on a

speech-based downstream task of Spoken Language Understanding showing that pretrained
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Figure 5.2: A2W model with the CAWE representations obtained by combining the encoders

representations and a�ention weights.

speech models could be used for transfer learning similar to VGG in vision (Simonyan and

Zisserman, 2014b) or CoVe in natural language understanding (McCann et al., 2017).

5.2.2 Model

Our S2S model is similar in structure to the Listen, A�end and Spell model (Chan et al., 2016)

which consists of 3 components: the encoder network, a decoder network and an a�ention

model. �e encoder maps the input acoustic features vectors a = (a1, a2, ..., aT ) where ai ∈
Rd, into a sequence of higher-level features h = (h1,h2, ...,hT ′). �e encoder is a pyramidal

(sub-sampling) multi-layer bi-directional Long Short Term Memory (BLSTM) network. �e

decoder network is also an LSTM network that learns to model the output distribution over

the next target conditioned on sequence of previous predictions i.e. P (yl|y∗l−1, y∗l−2, ..., y∗0,x)
where y∗ = (y∗0, y

∗
1, ..., y

∗
L+1) is the ground-truth label sequence. In this work, y∗i ∈ U is from

a word vocabulary. �is decoder generates targets y from h using an a�ention mechanism.

We use the location-aware a�ention mechanism (Chorowski et al., 2015) that enforces mono-

tonicity in the alignments by applying a convolution across time to the a�ention of previous

time step. �is convolved a�ention feature is used for calculating the a�ention for the cur-

rent time step which leads to a peaky distribution (Chorowski et al., 2015; Palaskar and Metze,

2018). Our model follows the same experimental setup and model hyper-parameters as the

word-based models described in our previous work (Palaskar and Metze, 2018) with the di�er-

ence of learning 300 dimensional acoustic feature vectors instead of 320 dimensional.

We now describe our method to obtain the acoustic word embeddings from the end-to-end

trained speech recognition system. �e model is as shown in Figure 5.2 where the embeddings

are constructed using the hidden representations obtained from the encoder and the a�ention

weights from the decoder. Our method of constructing “contextual” acoustic word embeddings

is similar to a method proposed for text embeddings, CoVe (McCann et al., 2017).
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�e main challenge that separates our method from CoVe (McCann et al., 2017) in learning

embeddings from a supervised task, is the problem of alignment between input speech and

output words. We use the location-aware a�ention mechanism that has the property to assign

higher probability to certain frames leading to a peaky a�ention distribution. We exploit this

property of location-aware a�ention in an A2W model to automatically segment continuous

speech into words as shown in our previous work (Palaskar and Metze, 2018), and then use this

segmentation to obtain word embeddings. Below, we formalize this process of constructing

contextual acoustic word embeddings.

Intuitively, a�ention weights on the acoustic frames hidden representations re�ect their im-

portance in classifying a particular word. �ey thereby provide a correspondence between

the frame and the word within a given acoustic context. We can thus construct word repre-

sentations by weighing the hidden representations of these acoustic frames in terms of their

importance to the word i.e. the a�ention weight. We show this in the Figure 5.2 wherein the

hidden representations and their a�ention weights are colored according to their correspon-

dence with a particular word.

Given that aj represents the acoustic frame j, let encoder(aj) represent the higher-level fea-

tures obtained for the frame aj ( i.e. encoder(aj) = h = (h1,h2, ...,hT ′)). �en, for the ith

word wi our model �rst obtains the mappings of wi to acoustic frames aK where K is the set

such that ∀k ∈ K
k = argmax

j
(attention(aj))

over all u�erances U containing the word wi in the training set.

Below we describe three di�erent ways of using a�ention to obtain acoustic word embeddings

for a word wi (here, n(K) represents the cardinality of the set K):

wi =

∑
k∈K encoder(ak)

n(K)
(5.1)

wi =

∑
k∈K attention(ak) · encoder(ak)

n(K)
(5.2)

wi = encoder(ak) where k = argmax
k∈K

attention(ak) (5.3)

�erefore, unweighted Average (U-AVG, Equation 5.1) is just the unweighted combination of all

the hidden representations of acoustic frames mapped to a particular word. A�ention weighted

Average (CAWE-W, Equation 5.2) is the weighted average of the hidden representations of all

acoustic frames using the a�ention weights for a given word. Finally, maximum a�ention

(CAWE-M, Equation 5.3) is the hidden representation of the acoustic frame with the highest

a�ention score for a given word across all u�erances in the training data. We call the a�ention-

weighted average and the maximum a�ention based techniques as Contextual Acoustic Word

Embeddings (CAWE) since they are contextual owing to the use of a�ention scores (over all

acoustic frames for a given word).
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5.2.3 Experiments and Results

We use a commonly used speech recognition setup, the 300 hour Switchboard corpus

(LDC97S62) (Godfrey et al., 1992) which consists of 2,430 two-sided telephonic conversations

between 500 di�erent speakers and contains 3 million words of text. Our second dataset is a 300

hour subset of the How2 dataset (Sanabria et al., 2018) of instructional videos, which contains

planned, but free speech, o�en outdoor and recorded with distant microphones, as opposed

to the indoor, telephony, conversational speech of Switchboard. �ere are 13,662 videos with

a total of 3.5 million words in this corpus. �e A2W obtains a word error rate of 22.2% on

Switchboard and 36.6% on CallHome set from the Switchboard Eval2000 test set and 24.3% on

dev5 test set of How2.

Comparing Methods for Constructing Embeddings

Datasets for Downstream Tasks We evaluate our embeddings by using them as features

for 16 benchmark sentence evaluation tasks that cover Semantic Textual Similarity (STS 2012-

2016 and STS B), classi�cation: Movie Review (MR), product review (CJ), sentiment analy-

sis (SST, SST-FG), question type (TREC), Subjectivity/Objectivity (SUBJ), and opinion polarity

(MPQA), entailment and semantic relatedness using the SICK dataset for SICK-E (entailment)

and SICK-R (relatedness) and paraphrase detection (MRPC). �e STS and SICK-R tasks mea-

sure Spearman’s coe�cient of correlation between embedding based similarity and human

scores, hence the scores range from [−1, 1] where higher number denotes high correlation.

All the remaining tasks are measured on test classi�cation accuracies. We use the SentEval

toolkit (Conneau and Kiela, 2018) to evaluate.

Training Details In all downstream evaluations involving classi�cation tasks, we have used

a simple logistic regression for classi�cation since a be�er representation should lead to be�er

scores without using complicated models (hence abstracting away model complexities from

our evaluations). �is also means that we can use the concatenation of CAWE and CBOW as

features to the logistic regression model without adding tunable embedding parameters.

Discussion From the results in Table 5.1 we see that CAWE-M outperforms U-AVG by 34%

and 13% and CAWE-W by 33.9% and 12% on Switchboard and How2 datasets respectively in

terms of average performance on STS tasks and leads to be�er or slightly worse performance

on the classi�cation tasks. We observe that CAWE-W usually performs worse than CAWE-M

which could be a�ributed to a noisy estimation of the word embeddings on the account of

taking even the less con�dent a�ention scores while constructing the embedding. In contrast,

CAWE-M is constructed using the most con�dent a�ention score obtained over all the occur-

rences of the acoustic frames corresponding to a particular word. We also observe that U-AVG

performs worse than CAWE-W on STS and SICK-R tasks since it is constructed using an even
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Switchboard How2

Dataset U-AVG CAWE-W CAWE-M U-AVG CAWE-W CAWE-M

STS 2012 0.3230 0.3281 0.3561 0.3255 0.3271 0.3648
STS 2013 0.1252 0.1344 0.1969 0.2070 0.2071 0.2716
STS 2014 0.3358 0.3389 0.3888 0.3375 0.3426 0.3940
STS 2015 0.3854 0.3881 0.4275 0.3852 0.3843 0.4173
STS 2016 0.2998 0.2974 0.3833 0.3248 0.3271 0.3159

STS B 0.3667 0.3510 0.4010 0.3343 0.3440 0.4000
SICK-R 0.5640 0.5800 0.6006 0.5800 0.6060 0.6440

MR 63.86 63.75 64.69 63.46 63.19 63.64
MRPC 70.67 69.45 69.80 68.29 67.83 70.61

CR 71.42 72.13 72.93 74.12 73.99 73.03

SUBJ 82.45 82.22 81.19 81.48 81.88 81.01

MPQA 73.76 73.28 73.75 74.21 74.18 73.53

SST 66.45 66.61 65.02 63.43 63.43 65.13
SST-FG 32.81 32.04 33.53 31.95 32.35 32.03

TREC 63.80 62.40 67.60 66.60 66.00 60.60

SICK-E 74.20 73.41 74.06 75.14 75.34 75.97

Table 5.1: Comparing three methods to obtain acoustic word embeddings from an A2W

model: unweighted average (U-AVG), weighted average (CAWE-W) and maximum a�ention

(CAWE-M).

noisier process in which all encoder hidden representations are weighted equally irrespective

of their a�ention scores.

Comparing with Text-based Embeddings

Datasets for Downstream Tasks �e datasets are the same as described above in Section

5.2.3 (Comparing Methods for Constructing Embeddings).

Training Details In all the following comparisons, we compare embeddings obtained only

from the training set of the speech recognition model, while the text-based word embeddings

are obtained by training Continuous Bag-of-Words (CBOW) word2vec model on all the tran-

scripts (train, validation and test). �is was done to ensure a fair comparison between our su-

pervised technique and the unsupervised word2vec method. �is naturally leads to a smaller

vocabulary for CAWE. Further, one of the drawbacks of A2W speech recognition model is that

it fails to capture entire vocabulary, recognizing only 3044 words out of 29874 (out of which

18800 words occur less than 5 times) and 4287 out of 14242 total vocabulary for Switchboard

and How2 respectively. Despite this fact, the performance of CAWE is very competitive with

word2vec CBOW which does not su�er from reduced vocabulary problem.
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Switchboard How2

Dataset CAWE-M CBOW Concat CAWE-M CBOW Concat

STS 2012 0.3561 0.3639 0.3470 0.3648 0.3688 0.3790
STS 2013 0.1969 0.1960 0.2010 0.2716 0.2524 0.2675

STS 2014 0.3888 0.3745 0.3795 0.3940 0.3973 0.3971

STS 2015 0.4275 0.4459 0.4481 0.4173 0.4781 0.4710

STS 2016 0.3833 0.3471 0.3651 0.3159 0.4023 0.3388

STS B 0.401 0.4100 0.3995 0.4000 0.4720 0.4487

SICK-R 0.6006 0.6170 0.6228 0.6440 0.6550 0.6945

MR 64.69 66.24 66.89 63.64 66.03 66.89
MRPC 69.80 68.99 68.00 70.61 69.68 68.52

CR 72.93 74.49 75.39 73.03 74.89 74.84

SUBJ 81.19 84.62 84.59 81.01 84.75 85.04
MPQA 73.75 76.44 75.36 73.53 75.56 75.60

SST 65.02 68.37 68.97 65.13 67.66 68.20
SST-FG 33.53 34.71 35.79 32.08 33.62 33.67
TREC 67.60 69.80 71.40 60.60 68.40 67.40

SICK-E 74.06 75.02 76.19 75.97 76.29 78.14

Table 5.2: Sentence Evaluations on 16 benchmark datasets for Switchboard and How2 cor-

pus. We compare the CAWE-M method with the word2vec embeddings trained with CBOW

method and with CAWE-M + CBOW concatenated (Concat) embeddings.

Discussion In Table 5.2, we see that our embeddings perform as well as the text-embeddings.

Evaluations using CAWE-M extracted from Switchboard based training show that the acoustic

embeddings when concatenated with the text embeddings outperform the word2vec embed-

dings on 10 out of 16 tasks. �is concatenated embedding shows that we add more information

with CAWE-M that improves the CBOW embedding as well. �e gains are more prominent

in Switchboard as compared to the How2 dataset since How2 is planned instructional speech

whereas Switchboard is spontaneous conversational speech (thereby making the How2 char-

acteristics closer to text leading to a stronger CBOW model).

Evaluation on Spoken Language Understanding

Dataset In addition to generic sentence-level evaluations, we also evaluate CAWE on the

widely used ATIS dataset (Price, 1990) for Spoken Language Understanding (SLU). ATIS dataset

is comprised of spoken language queries for airline reservations that have intent and named

entities. Hence, it is similar in domain to Switchboard, making it a useful test bed for evaluating

CAWE on a speech-based downstream evaluation task.

Training Details For this task, our model is similar to the simple Recurrent Neural Network

(RNN) based model architecture as investigated in (Mesnil et al., 2013). Our architecture is

comprised of an embedding layer, a single layer RNN-variant (Simple RNN, Gated Recurrent
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CAWE-M CAWE-W CBOW

RNN 91.49 91.67 91.82

GRU 93.25 93.56 93.11

Table 5.3: Speech-based contextual word embeddings (CAWE-M and CAWE-W) match the

performance of the text-based embeddings (CBOW) on the ATIS dataset with an RNN and

GRU model

Unit (GRU)) along with a dense layer and so�max. In each instance, we train our model for 10

epochs with RMSProp (learning rate 0.001). We train each model 3 times with di�erent seed

values and report average performance.

Discussion (Mesnil et al., 2013) concluded that text-based word embeddings trained on large

text corpora consistently lead to be�er performance on the ATIS dataset. We demonstrate that

direct speech-based word embeddings could lead to matching performance when compared

to text-based word embeddings in this speech-based downstream task, thus highlighting the

utility of our speech based embeddings. Speci�cally, we compare the test scores obtained by

initializing the model with CAWE-M, CAWE-W and CBOW embeddings and �ne-tuning them

based on the task.
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Figure 5.3: Learning from multiple modalities using Canonical Correlation Analysis (CCA)

loss.

5.3 Multiview Learning for Multimodal Embeddings

5.3.1 Multiview Learning

Many large datasets include multiple modalities, leading to an exploration of methods that

exploit the multimodal structure of the data. Further, collecting large datasets with multiple

views is relatively easier than collecting large datasets with high quality annotations. Multiple

views help learn be�er representations for each view separately (Ngiam et al., 2011), or a shared

representation across multiple views (Arora and Livescu, 2013), and multiview learning has

also been shown to be useful in low-resource se�ings (Socher and Fei-Fei, 2010). However, the

fusion of information from disparate modalities remains a challenging problem (Baltrušaitis

et al., 2019).

We build multiview models on the How2 dataset (Sanabria et al., 2018), which at the time was the

largest multi-view multimodal dataset. It contains various views of the same data point which

is necessary for multi-view learning. While previous multiview models have exploited the

natural alignment between views, such as speech and articulatory features (Wang et al., 2015),

here we have to overcome challenges resulting from latently aligned views. For instance, there

exists an alignment between words in an English sentence, and the words in its Portuguese

translation. Figure 5.3 shows an overview of our learning algorithm with 4 di�erent input

views, described below.

Given these multiple parallel modalities, we address the following: how much information is

shared across modalities? How can we learn a representation that captures information from

all modalities? We measure this using intrinsic evaluations via retrieval for speech recognition

and speech translation downstream tasks.

5.3.2 Model

In the following, we describe the sequence-to-sequence model-based encoders we used to ex-

tract features for speech, text and video data. We then describe the correlation-based methods
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Figure 5.4: Extracting sequence embeddings from trained sequence to sequence models.

we used to learn representations.

Input Representations

We use word-level representations from Machine Translation (MT) and Automatic Speech

Recognition (ASR) systems to build u�erance-level representations. All the models we consider

are a�ention-based, sequence-to-sequence models (Bahdanau et al., 2014b) that were trained

in a supervised way on the How2 dataset . �e encoder, a stacked bi-directional RNN, reads a

sequence of feature vectors x1, . . . , xT and produces a sequence of hidden states h1, . . ., hT ′

(T ′ <= T because of possible sub-sampling). �e decoder, an RNN with a�ention mechanism,

produces context vectors c1, . . . , cS . We use the average of the hi (resp. ci) as the represen-

tation for the input sequence (resp. output sequence), as depicted in Figure 5.4. �e RNNs for

ASR are LSTMs (Hochreiter and Schmidhuber, 1997) and GRUs (Cho et al., 2014) for MT. For

the acoustic representations to be at the same level of granularity as the word representations

from MT, we use the Acoustic2Word model (Palaskar and Metze, 2018) as our ASR model, and

obtain acoustic embeddings hi at word-level.

For the video modality, we condense the information present in each u�erance into a single

vector as follows. We �rst use a ResNet (He et al., 2016a) to map each frame of the video to

a multi-class posterior, based on the 1000 ImageNet classes. We then compute the average of

those posteriors. As the video frames are sampled with a hard temporal threshold, it may con-

tain noisy artifacts. We average over all the frames to capture the most persistent predictions

and reduce the variability due to noise. We experimented with representations from action

networks (Hara et al., 2018) trained on an action dataset (Kay et al., 2017), and obtained similar

results as with ResNet features.
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Linear CCA

To measure how much information is shared by pairs of representations, we use Canonical

Correlation Analysis (CCA) (Hotelling, 1992). We assume that we are given two views of the

same data point: for instance, for a given u�erance, the audio recording and the transcription.

�ese two views are represented by random variables X and Y (dx - and dy - dimensional

respectively), and k is the dimensionality of the shared representation. Linear CCA seeks two

linear transformations

U ∈ Rdx×k & V ∈ Rdy×k (5.4)

such that the components of UTX and V TY are maximally correlated. Formally, we want to

maximize

EX,Y [tr(UTXY TV )] (5.5)

subject to

EX [UTXXTU ] = EY [V
TY Y TV ] = Ik. (5.6)

For dataset {xi, yi}Ni=1, we de�ne CXY the empirical cross-covariance matrix between X and

Y , and CXX and CY Y the empirical auto-covariance matrices of X and Y , respectively. U

and V are given by the k le� and right singular vectors of C
−1/2
XX .CXY .C

−1/2
Y Y with the largest

singular values.

CCA is a be�er objective than predicting one view with the other when no single regression

provides a fully adequate solution. For instance, it is very hard to generate speech from text.

Instead, it is easier to predict the dependent variate which has the largest multiple correlation.

Deep CCA

Deep CCA (DCCA) (Andrew et al., 2013) is a natural extension of linear CCA, with the objective

to maximally correlateUT f(X) andV T g(Y ). f and g are non-linear feature extractors, which

can be learned via gradient descent on the CCA objective. It is also natural to extend CCA to

multiple views (Horst, 1961).

Instead of 2 views, we have J viewsX1, . . . ,XJ a�ached to each data point, stored in matrices

Xj ∈ Rdj×N . Linear transformationsUj ∈ Rdj×k
J

j=1 are computed, that minimize the mutual

reconstruction error under constraints, in a way equivalent to maximizing correlation. �is

framework can be extended to non-linear feature extractors (Arora and Livescu, 2013) with

the objective:

minimize

J∑
j=1

||G− UTj fj(Xj)||22 (5.7)
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subject to

GGT = Ik (5.8)

with respect to parameters {G, {fj , Uj}j}. Here, fj(Xj) ∈ Rhj×N is the output of j-th fea-

ture extractor, and G ∈ Rk×N can be viewed as the learned representations for the given

dataset. E�ectively, each pair of feature extractor fj and linear transformation Uj tries to re-

construct the learned representation G. �e constraints on G prevent the feature extractors

from collapsing the features. We refer to this method as Deep Generalized CCA (DGCCA). A

linear variant of DGCCA where the fj ’s are identity maps has been applied to acoustic feature

learning (Arora and Livescu, 2013) and learning word embeddings (Rastogi et al., 2015).

5.3.3 Experiments

We applied the methods described above to the How2 dataset and evaluated the learned repre-

sentations using a retrieval task.

Dataset Setup

We apply the described methods to the How2 dataset (Sanabria et al., 2018), which we use as a

4-way parallel corpus: video, speech, transcription in English, translation in Portuguese. �e

dataset contains 13,500 videos, or 300 hours of speech, and is split into 185,187 training, 2022

development (dev), and 2361 test u�erances. It is yet unclear how much temporal coherence

there is between the video modality and the language (text and speech) content, as objects

mentioned early in the video may only appear much later on screen, or only for a very brief

time.

Whenever we mention an MT task, it consists of translating English (en) text to Portuguese (pt)

text; an ASR task consists of transcribing English speech to English text; a Speech Translation

(ST) task consists of mapping English speech to Portuguese text.

Evaluations

To measure the richness of the learned representations, we use them in a retrieval task: given

a source sequence in view 1, and a set of reference sequences in view 2, �nd the n sequences

in the reference set that are closest to the source sequence. Since we have parallel corpora,

we can check whether the correct sequence is present within those n sequences. We report

this as Recall@10 (n = 10 throughout here), with scores ranging from 0 to 100. Finding the

closest sequences consists of projecting the reference set as well as the source sequence into

the shared space, then computing distances between source and references, and retrieving the

closest points. �e Recall@10 of picking at random from the reference set is 0.5% for the dev

set and 0.4% for the test set.
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Linear CCA Deep CCA

dev test dev test k
text (en) - text (pt) 82.5 81.4 95.1 94.6 400

speech - text (en) 98.3 96.9 92.1 90.1 160

video - text (en) 0.9 0.8 2.3 1.6 400

video - speech 0.8 0.6 1.9 1.8 160

Table 5.4: Recall@10 for retrieving reference modality given source modality (”source - ref-

erence”). Swapping source and reference change retrieval scores by less than 1% absolute.

5.3.4 Results

In the following, we will use k to indicate the dimensionality of the shared representation.

Typically, k should be at most the smallest dimensionality of all views involved. We set k to

half the smallest dimensionality as a balance between keeping as much information as possi-

ble while dropping uninformative components. �roughout all our experiments, we add the

identity matrix scaled by 10−16 to the view-speci�c co-variance matrices.

In all experiments involving DCCA and DGCCA, we use 2-layer feedforward neural networks

as feature extractors (f , g, fj), the �rst layer with the same size as the input, and the second of

size k. �e training proceeds in epochs, which consist of a full pass over the training set with

batch size 5500. A�er each epoch, we compute the retrieval scores between all possible pairs of

di�erent views on the dev set, and aggregate the scores by picking the highest of those scores.

Our �nal model is the one with the highest aggregate score. For the experiments involving the

video modality, we used a weight decay of 10−5.

Bimodal Experiments

We start by applying linear CCA and deep CCA to pairs of views, at the u�erance level. Text,

speech and video sequences are represented with 800-, 320- and 1000-dimensional vectors re-

spectively. As measured by the retrieval rates shown in Table 5.4, the representations learned

for text (en and pt) and speech capture almost all of the information present in both views, in a

space with half the dimensionality. �e original text (en) and text (pt) representations having

the same dimensionality, we scored the retrieval of a Portuguese sentence given an English

sentence, which yielded a score of 0.38%. For other pairs of modalities, there is no obvious way

of computing pairwise distances in the original space. �e retrieval scores involving the video

modality are very low (discussed below).

To tie the results in Table 5.4 to known metrics, we take the �rst retrieval result and score it

as though it were the output of an ASR or MT system. Given a speech u�erance from the test

set that we want to transcribe, or a source sentence we wish to translate, we pick the closest

sentence from a reference set using our learned DCCA model. We then score this pick using the

relevant metric, WER for ASR and BLEU for MT. �e score strongly depends on the contents

of the reference set: if the reference set contains no appropriate sentence to transcribe (resp.
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Reference Set WER BLEU (MT) BLEU (ST)
train 134% 5.2 0.2

train + test 27.4% 80.7 19.8

Baseline S2S 24.3% 57.3 27.9

Table 5.5: Scoring top-1 retrieval result from DGCCA models with ASR, MT and ST metrics.

Models used (from le� to right) were trained using speech and text (en); text (en) and text (pt);

speech, text (en), text (pt) and video. Source sentences for the retrieval are from the test set.

translate) the source, the WER (resp. BLEU) will be high (resp. low). We thus test on two

reference sets: 1) the training set, 2) the union of the training and test set. In se�ing 1, the

reference set does not contain the correct answers, whereas it does in se�ing 2. When using

only the test set as a reference set, the score is almost perfect, and we only report the more

challenging se�ings, in columns WER and BLEU (MT) of Table 5.5. �e results on the train set

are quite poor given that the train set may not contain appropriate sentences for the test set.

We estimate this by �nding, for each sentence in the test set, the closest sentence (in terms

of edit distance) from the train set. �is yields a BLEU of 10.6, and a WER of 63.0%. When

using the union of test and train as a reference set, our model is still able to mostly pick out

the correct sentences, achieving on par or be�er performance than a baseline sequence-to-

sequence model. �is is consistent with our retrieval scores, as the retrieval for text and text

was slightly higher than speech and text.

n-modal experiments

In subsequent experiments, we used DGCCA to learn representations with more than 2 views.

We learned representations with English text, speech and video, with k = 160, and report re-

trieval results in Table 5.6. As compared to Table 5.4, the retrieval scores between speech and

text (en) decrease, as the model has to accommodate a third view. Keeping hyperparameters

�xed and adding a fourth view, Portuguese text, we obtain the results in Table 5.7. Relative to

Table 5.4, the text - text retrieval score increases, while the speech - text (en) score decreases,

and the scores involving video decrease slightly. �is could be explained by the fact that text -

text retrieval is an easier task than those involving speech and video, so that the model trades

o� a higher loss in the video and speech domain for a lower loss in the text domain. To remedy

this, one could add weights wj to each reconstruction loss, or tune the architectures of the fj .

We again evaluate our speech - text (pt) retrieval with an ST task. �e results are shown in

column BLEU (ST) of Table 5.5, and are again consistent with the retrieval scores.

Discussion

As shown by our Recall@10 retrieval results, the CCA objective induces a shared space cap-

turing most of the information shared across the original spaces. Scoring the top-1 retrieved

data point with common MT, ASR and ST metrics is consistent with this �nding. Moreover,
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Text (en) Speech Video
text (en) dev - 92.1 1.7

test - 89.8 1.8

speech dev 92.1 - 1.9

test 89.1 - 1.2

video dev 1.4 1.9 -

test 1.7 1.2 -

Table 5.6: Recall@10 for retrieving column modality given source row modality, for a DGCCA

model trained on 3 views. Results from the bo�om le� triangle can be compared to those in

Table 5.4.

Text (pt) Text (en) Speech Video
Text (pt) dev - 98.8 73.5 2.1

test - 98.3 71.0 1.1

Text (en) dev 98.8 - 88.2 1.4

test 98.4 - 85.4 0.9

Speech dev 73.0 88.1 - 1.1

test 70.7 85.4 - 1.0

Video dev 2.1 1.1 1.0 -

test 1.1 1.1 0.9 -

Table 5.7: Recall@10 for retrieving column modality given source row modality, for a DGCCA

model trained on 4 views. Results from the bo�om le� triangle can be compared to those in

Table 5.4.

this shared space is learned on top of high-level, unrelated representations: the training of the

ASR and MT systems is entirely independent. Our results involving video are not in agreement

with that hypothesis, and we see two possible explanations. First, there is a temporal mismatch

between the video modality and the language content. Second, it is possible that the ResNet

posteriors are either extremely noisy, or simply fail to identify certain relevant objects because

of a domain mismatch. Previous work in the context of ASR shows that using the penultimate

instead of the last layer of the ResNet makes li�le di�erence (Palaskar et al., 2018).
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5.4 Chapter Conclusion

We propose a Contextual Acoustic Word Embedding (CAWE) model that is necessary to align

the latent representations across the multiple modalities commonly available through video

datasets for the semi-supervised learning approach we use (DGCCA). CAWE does not require

word-boundary annotations within a spoken sentence as was necessary for previously devel-

oped acoustic word embedding methods. �is method performs competitively on 16 standard

word embedding evaluation benchmarks and are also useful for other acoustic downstream

tasks such as spoken language understanding.

We use these word-level speech representations in an advanced, correlation-based represen-

tation learning method, Deep Generalized Canonical Correlation Analysis (DGCCA), which re-

quired latent space representation alignment across modalities. �is method is a semi-supervised

learning method that learns from the multiple multimodal views instead of fully supervised

training. We use a real-world noisy dataset (the How2 dataset ) with this method for the �rst

time; prior work had shown the utility of DGCCA either on synthetic datasets or on clean

controlled-environment datasets. In addition to expanding this method to a real world dataset,

we demonstrate its e�ectiveness on standard downstream tasks: speech translation, speech

recognition, and text translation.



Chapter 6

Summarization & QA

6.1 Introduction

With Chapter 4 and Chapter 5, we focused on monotonic and re-ordering tasks that fuse mul-

timodal information directly at the input or at a higher-level latent representation for Speech

Recognition and Translation. Both of these tasks are conventionally modeled at a sentence-

level with each sentence of a video considered an independent data point. While there could

be necessary context across a video that improves these tasks with the entire video context

instead of a single sentence, the memory and compute requirement make such modeling in-

feasible currently.

While sentence-level modeling is a solution to Speech Recognition and Translation, there are

certain abstraction tasks such as Video Summarization or �estion Answering that do not en-

joy the same �exibility. For such abstraction tasks, entire video context is necessary to perform

the information compression, re-phrasing, and re-structuring that is necessary to generate a

natural language video summary or answer. In this Chapter, we extend the multimodal learn-

ing tasks to Video Summarization and �estion Answering. We perform these tasks indepen-

dently, as well as in conjunction using a transfer learning approach.

For video-level modeling and abstraction, there is a necessity for the multimodal fusion model

to adapt to these task requirements as well. In this Chapter, we introduce the Hierarchical
Latent Representation Fusion model that provides the necessary control for video-level abstrac-

tion. Figure 6.1 contrasts the Hierarchical Latent Representation Fusion model with the other

fusion models used so far. Conceptually, the “hierarchical” design of this model allows for this

video-level control to generate abstractive text accessing information from any of the input

modalities: video or text transcript. Further discussion on this model is below.

Video summarization is a compression, rephrasing and restructuring task. Mulitmodal video

summarization further combines information obtained from the visual modality. With these

two input modalities, we address this by aiming to generate a short text summary of the video

55
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that describes the most salient content of the video. A video summary can aid the search and

retrieval of relevant videos without watching. it can also help in representing content of a video

where other searchable metadata is unavailable (Song et al., 2011; Wang et al., 2012; Otani et al.,

2016; Torabi et al., 2016). Video summaries bene�t users through be�er contextual information

and user experience, and helps video sharing platforms with increased user engagement and

retention by retrieving or suggesting relevant videos.

We study multimodal summarization with various methods to summarize the intent of open-
domain instructional videos stating the exclusive and unique features of the video, irrespective

of modality. We study this task in detail using the How2 dataset (Sanabria et al., 2018) which

contains human annotated video summaries for a varied range of topics. Our models generate

natural language descriptions for video content using the transcriptions (both user-generated

and output of automatic speech recognition systems) as well as visual features extracted from

the video. We also introduce a new evaluation metric (Content F1) that suits this task and

present detailed results to understand the task be�er.

In addition to summarization, we explore the video question answering task that generates nat-

ural language answers based on audio, video, textual questions, and textual video-summaries.

In this task, we extend beyond the summarization task that involves compression of all input

information into a shortened form, to now generating text based on speci�c questions by se-

lecting appropriate portions of the inputs. In addition to compression and rephrasing required

for summarization, question answering further requires information selection. For question

answering, we design a transfer learning model that leverages the summarization model prop-

erties and adapts them to answer generation. We participated in the 7th Dialog State Tracking

Challenge (2019) with this transfer learning model. Our submissions ranked �rst in the auto-

matic as well as human evaluation metrics of this challenge (Yoshino et al., 2018).

Hierarchical Latent Representation Fusion Model

�e Input Fusion model provides a technique for monotonic adaptation of the various input

modalities, here XM1 and XM2, and is speci�cally designed for modalities that have a high

granularity of monotonic constraint, for example, speech and transcription. �e Latent Repre-

sentation Fusion model provides a higher-level adaptation in the latent space,LY1. �is higher-

level representation relaxes the strict monotonicity constraint allowing re-ordering tasks like

translation.

For video summarization and question answering, there is no such monotonic constraint in the

task. Instead, the is an abstraction constraint wherein the information across the entire video

(not u�erances) needs to be compressed and restructured to form natural language summaries

or answers. �is is o�en an open-vocabulary text generation problem. For such an abstraction

constraint, we propose to extend the Latent Representation Fusion model to a Hierarchical
Latent Representation Fusion model that can fuse input modalities, perform abstraction, as well

as generate observable outputs Y1. In our formulation, Y1 is the output of a text generator.
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Latent Representation 
Fusion

Hierarchical Latent 
Representation Fusion

Input Fusion

XM1

XM2 Y1

XM1

XM2 LY1

XM1

XM2 Y1LY1

Figure 6.1: We build on top of the existing Input Fusion and Latent Representation Fusion

models presented so far for Summarization and �estion Answering. We present the Hierar-

chical Latent Representation Fusion model that not only learns a multimodal latent represen-

tation LY1, but converts it into observable outputs Y1 via hierarchical combination.

�e output generator achieves explicit control over the input time-scales for both modalities

XM1 and XM2 through LY1. More speci�cally, to implement joint input fusion and abstrac-

tion, we use the Hierarchical A�ention mechanism proposed by Libovický and Helcl within

Latent Fusion (LY1) step, and this modi�ed LY1 is used for text generation Y1. �e Hier-

archical A�ention mechanism was initially proposed for Machine Translation. In this work,

we explore its applications for video-level abstraction tasks, Summarization and �estion An-

swering. While the Hierarchical Latent Representation Fusion model can be used for Speech

Recognition and Translation, the converse is not possible. For abstraction tasks, the hierarchi-

cal control over input modality time-scales provided by this model is essential. �rough the

experiments in this chapter, we show the need for such model evolution across learning tasks.

Chapter Structure

In this Chapter, we explore the two abstraction tasks in sequence, and in conjunction. We

begin by describing the video summarization task formulation, followed by models used and

the corresponding automatic and human evaluation results. �e next Section describes the

video question answering task, transfer learning from summarization to question answering

to connect the two abstraction tasks, followed by the transfer learning results and the sys-

tem description for our participation in the Dialog State Tracking Challenge with this transfer

learning approach. �e work presented in this chapter has been published in Palaskar et al.

2019a, Sanabria et al. 2019 and Palaskar et al. 2020.
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6.2 Summarization

6.2.1 Task Formulation

Summarization is a task of producing a shorter version of the content in the document while

preserving its information and has been studied for both textual documents (automatic text

summarization) and visual documents such as images and videos (video summarization). Au-

tomatic text summarization is a widely studied topic in natural language processing (Luhn,

1958; Kupiec et al., 1995; Mani, 1999); given a text document the task is to generate a tex-

tual summary for applications that can assist users to understand large documents. Most of

the work on text summarization has focused on single-document summarization for domains

such as news (Rush et al., 2015; Nallapati et al., 2016; See et al., 2017; Narayan et al., 2018) and

some on multi-document summarization (Goldstein et al., 2000; Lin and Hovy, 2002; Woodsend

and Lapata, 2012; Cao et al., 2015; Yasunaga et al., 2017).

Video summarization is the task of producing a compact version of the video (visual summary)

by encapsulating the most informative parts (Money and Agius, 2008; Lu and Grauman, 2013;

Gygli et al., 2014; Song et al., 2015; Sah et al., 2017). Multimodal summarization is the combina-

tion of textual and visual modalities by summarizing a video document with a text summary

that summarizes the content of the video. Multimodal summarization is a more recent chal-

lenge with no benchmarking datasets yet. Li et al. (2017) collected a multimodal corpus of

500 English news videos and articles paired with manually annotated summaries. �e dataset

is small-scale and has news articles with audio, video, and text summaries, but there are no

human annotated audio-transcripts.

Related tasks include image or video captioning and description generation, video story gener-

ation, procedure learning from instructional videos and title generation which focus on events

or activities in the video and generating descriptions at various levels of granularity from sin-

gle sentence to multiple sentences (Das et al., 2013; Regneri et al., 2013; Rohrbach et al., 2014;

Zeng et al., 2016; Zhou et al., 2018a; Zhang et al., 2018; Gella et al., 2018). A closely related

task to ours is video title generation where the task is to describe the most salient event in

the video in a compact title that is aimed at capturing users a�ention (Zeng et al., 2016). Zhou

et al. (2018a) present the YouCook II dataset containing instructional videos, speci�cally cook-

ing recipes, with temporally localized annotations for the procedure which could be viewed as

a summarization task as well although localized with time alignments between video segments

and procedures.

6.2.2 Models

Text-based We study various summarization models. First, we use a Recurrent Neural Net-

work (RNN) Sequence-to-Sequence (S2S) model (Sutskever et al., 2014b) consisting of an en-

coder RNN to encode (text or video features) with the a�ention mechanism (Bahdanau et al.,
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today we are going to show you how to make spanish omelet . i 'm going to 
dice a little bit of peppers here . i 'm not going to use a lot , i 'm going to use 
very very little . a little bit more then this maybe . you can use red peppers if 
you like to get a little bit color in your omelet . some people do and some 
people do n't …. t is the way they make there spanish omelets that is what she 
says . i loved it , it actually tasted really good . you are going to take the onion 
also and dice it really small . you do n't want big chunks of onion in there 
cause it is just pops out of the omelet . so we are going to dice the up also very 
very small . so we have small pieces of onions and peppers ready to go .

how to cut peppers to make a spanish omelette; get expert tips and advice on making cuban breakfast recipes in this free 
cooking video .

Summary

Transcript Video

Figure 6.2: How2 dataset example with di�erent modalities. “Cuban breakfast” and “free

cooking video” is not mentioned in the transcript, and has to be derived from other sources.

2014b) and a decoder RNN to generate summaries. Our second model is a Pointer-Generator

(PG) model (Vinyals et al., 2015a; Gülçehre et al., 2016) that has shown strong performance for

abstractive summarization (Nallapati et al., 2016; See et al., 2017).

Video-based We represent videos by features extracted from a pre-trained action recogni-

tion model: a ResNeXt-101 3D Convolutional Neural Network (Hara et al., 2018) trained to

recognize 400 di�erent human actions in the Kinetics dataset (Kay et al., 2017). �ese features

are 2048 dimensional, extracted for every 16 non-overlapping frames in the video. �is results

in a sequence of feature vectors per video rather than a single/global one. A single-layer RNN

encoder is used to represent these sequence-based video features.

Text-and-Video-based As our third model, we use hierarchical a�ention approach of Li-

bovický and Helcl 2017 originally proposed for multimodal machine translation to combine

textual and visual modalities to generate text. �e model �rst computes the context vector

independently for each of the input modalities (text and video). In the next step, the context

vectors are treated as states of another encoder, and a new vector is computed. In Figure 6.3

we present the building block of our models.

More speci�cally, the computation of the hierarchical a�ention model is divided in two steps

as described in Libovický and Helcl 2017. Firstly, independent context computation, using the

standard a�ention mechanism proposed by Bahdanau et al. (Bahdanau et al., 2014b). Equations

1-3 describe the standard a�ention mechanism that we will use further to build the hierarchical

a�ention mechanism. eij is the representation of the a�ention energies, αij is the a�ention

distribution, and ci is the context vector in the ith decoder step.



Summarization 60

videoframes············ResNeXtfeatures(w/RNN:7;w/oRNN:6,8,9)a�entionRNNovertranscript(3-5,8,9)a�ention⊕hier.a�n.(8,9)w...RNNdecoder

video frames· · · · · ·

· · · · · · ResNeXt features
(w/ RNN: 7; w/o RNN: 6, 8, 9)

a�ention

RNN over transcript (3-5, 8, 9)

a�ention

⊕
hier. a�n.

(8, 9)
w

. . .

RNN decoder

Figure 6.3: Building blocks of the sequence-to-sequence models, gray numbers in brackets

indicate which components are utilized in which experiments.

eij = vTa tanh(Wasi + Uahj) (6.1)

αij =
exp(eij)∑Tx
k=1 exp(eik)

(6.2)

ci =

Tx∑
j=1

αijhj (6.3)

Equation 5.3 computes the context vector for each encoder state independently. �e second

step of hierarchical a�ention computation is as follows:

e
(k)
i = vTb tanh(Wbsi + U

(k)
b c

(k))
i (6.4)

β
(k)
i =

exp(e
(k)
i∑N

n=1 exp(e
(n)
i )

(6.5)

ci =
N∑
k=1

β
(k)
i U (k)

c c
(k)
i (6.6)

�e context vectors obtained via Equation 5.3 is projected onto a shared space (Equation 5.4)

to compute another a�ention distribution over the projected context vectors (Equation 5.5),

and their corresponding weighted average (Equation 5.6). c
(k)
i is the context vector of the k-th

encoder, additional trainable parameters vb and Wb are shared for all encoders. U
(k)
b and U

(k)
c

are encoder-speci�c projection matrices, that can be set equal and shared.
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Set Words

Transcript the, to, and, you, a, it, that, of, is, i, going, we, in,

your, this, ’s, so, on

Summary in, a, this, to, free, the, video, and, learn, from, on,

with, how, tips, for, of, expert, an

Table 6.1: Most frequently occurring words in Transcript and Summaries.

6.2.3 Experimental Setup

Dataset �e How2 dataset (Sanabria et al., 2018) contains about 2,000 hours of short instruc-

tional videos, spanning di�erent domains such as cooking, sports, indoor/outdoor activities,

music, etc. Each video is accompanied by a human-generated transcript and a 2 to 3 sentence

summary is available for every video wri�en to generate interest in a potential viewer. �e

example in Figure 6.2 shows the transcript describes instructions in detail, while the summary

is a high-level overview of the entire video, mentioning that the peppers are being “cut”, and

that this is a “Cuban breakfast recipe”, which is not mentioned in the transcript. We observe

that text and vision modalities both contain complementary information, thereby when fused,

helps in generating richer and more �uent summaries. Additionally, we can also leverage the

speech modality by using the output of a speech recognizer as input to a summarization model

instead of a human-annotated transcript. �e How2 corpus contains 73,993 videos for training,

2,965 for validation and 2,156 for testing. �e average length of transcripts is 291 words and of

summaries is 33 words. A more general comparison of the How2 dataset for summarization as

compared with certain common datasets is given in (Sanabria et al., 2018).

Table 6.1 shows the frequent words in transcripts (input) and summaries (output). �e words in

transcripts re�ect conversational and spontaneous speech while words in the summary re�ect

their descriptive nature.

Evaluation We evaluate the summaries using the standard metric for abstractive summa-

rization ROUGE-L (Lin and Och, 2004) that measures the longest common sequence between

the reference and the generated summary. Additionally, we introduce the Content F1 metric

that �ts the template-like structure of the summaries. We analyze the most frequently occur-

ring words in the transcription and summary. �e words in transcript re�ect the conversational

and spontaneous speech while the words in the summaries re�ect their descriptive nature. For

examples, see Table 6.1.

�e Content F1 metric is the F1 score of the content words in the summaries based over a

monolingual alignment, similar to metrics used to evaluate quality of monolingual alignment

(Sultan et al., 2014). We use the METEOR toolkit (Banerjee and Lavie, 2005; Denkowski and

Lavie, 2014) to obtain the alignment. �en, we remove function words and task-speci�c stop

words that appear in most of the summaries (see Table 6.1) from the reference and the hypothe-

sis. �e stop words are easy to predict and thus increase the ROUGE score. We treat remaining
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No. Description ROUGE-L Content F1

1 Random Baseline using Language Model 27.5 8.3

2a Rule-based Extractive summary 16.4 18.8

2b Next-neighbor Summary 31.8 17.9

3 Using Extracted Sentence from 2a only (Text-only) 46.4 36.0

4 First 200 tokens (Text-only) 40.3 27.5

5a S2S Complete Transcript (Text-only, 650 tokens) 53.9 47.4
5b PG Complete Transcript (Text-only) 50.2 42.0

5c ASR output Complete Transcript (Text-only) 46.1 34.7

6 Action Features only (Video) 38.5 24.8

7 Action Features + RNN (Video) 46.3 34.9

8 Ground-truth transcript + Action with Hierarchical A�n 54.9 48.9

Table 6.2: ROUGE-L and Content F1 for di�erent summarization models: random baseline

(1), rule-based extracted summary (2a), nearest neighbor summary (2b), di�erent text-only

(3,4,5a), pointer-generator (5b), ASR output transcript (5c), video-only (6-7) and text-and-

video model (8).

content words from the reference and the hypothesis as two bags of words and compute the

F1 score over the alignment. Note that the score ignores the �uency of output.

In addition to automatic evaluation, we perform a human evaluation to understand the out-

puts of this task be�er. Following the abstractive summarization human annotation work of

Grusky et al. (2018), we ask our annotators to label the generated output on a scale of 1− 5 on

informativeness, relevance, coherence, and �uency. We perform this on randomly sampled 500

videos from the test set. We evaluate three models: two unimodal (text-only (5a), video-only

(7)) and one multimodal (text-and-video (8)). �ree workers annotated each video on Ama-

zon Mechanical Turk. �ey compared outputs of unimodal and multimodal models with the

ground-truth summary and assign a score between 1 (lowest) and 5 (highest). �e annotators

were shown the ground-truth summary and a candidate summary (without knowledge of the

type of modality used to generate it). Annotation was restricted to English speaking countries.

In total, 129 annotators participated in this task.

6.2.4 Results

As a baseline, we train an RNN language model (Sutskever et al., 2011) on all the summaries

and randomly sample tokens from it. �e output obtained is �uent in English leading to a high

ROUGE score, but the content is unrelated which leads to a low Content F1 score in Table 6.2.

As another baseline, we replace the target summary with a rule-based extracted summary from

the transcription itself. We used the sentence containing words “how to” with predicates learn,

tell, show, discuss or explain, usually the second sentence in the transcript. Our �nal baseline

was a model trained with the summary of the nearest neighbor of each video in the Latent

Dirichlet Allocation (LDA; Blei et al., 2003a) based topic space as a target. �is model achieves
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Figure 6.4: Word distribution in comparison with the human summaries for di�erent uni-

modal and multimodal models. Density curves show the length distributions of human anno-

tated and system produced summaries.

a similar Content F1 score as the rule-based model which shows the similarity of content and

further demonstrates the utility of the Content F1 score.

We use the transcript (either ground-truth transcript or speech recognition output) and the

video action features to train various models with di�erent combinations of modalities. �e

text-only model performs best when using the complete transcript in the input (650 tokens).

�is is in contrast to prior work with news-domain summarization (Nallapati et al., 2016). We

also observe that PG networks do not perform be�er than S2S models on this data which could

be a�ributed to the abstractive nature of our summaries and also the lack of common n-gram

overlap between input and output which is the important feature of PG networks. We also

use the automatic transcriptions obtained from a pre-trained automatic speech recognizer as

input to the summarization model. �is model achieves competitive performance with the

video-only models (described below) but degrades noticeably than ground-truth transcription

summarization model. �is is as expected due to the large margin of ASR errors in distant-

microphone open-domain speech recognition.

We trained two video-only models: the �rst one uses a single mean-pooled feature vector rep-

resentation for the entire video, while the second one applies a single layer RNN over the

vectors in time. Note that using only the action features in input reaches almost competi-

tive ROUGE and Content F1 scores compared to the text-only model showing the importance

of both modalities in this task. Finally, the hierarchical a�ention model that combines both

modalities obtains the highest score.

Human Evaluation In Table 6.3, we report human evaluation scores on our best text-only,

video-only and multimodal models. In three evaluation measures, the multimodal models with

the hierarchical a�ention reach the best scores.

In Figure 6.4, we analyze the word distributions of di�erent system generated summaries with

the human annotated reference. �e density curves show that most model outputs are shorter
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Model (No.) INF REL COH FLU

Text-only (5a) 3.86 3.78 3.78 3.92

Video-only (7) 3.58 3.30 3.71 3.80

Text-and-Video (8) 3.89 3.74 3.85 3.94

Table 6.3: Human evaluation scores on 4 di�erent measures of Informativeness (INF), Rele-

vance (REL), Coherence (COH), Fluency (FLU).

No. Model R-L C-F1 Output

- Reference - - watch and learn how to tie thread to a hook to help

with �y tying as explained by out expert in this free

how - to video on �y tying tips and techniques .

8 Ground-truth text

+ Action Feat.

54.9 48.9 learn from our expert how to a�ach thread to �y �sh-

ing for �y �shing in this free how - to video on �y

tying tips and techniques .

5a Text-only

(Ground-truth)

53.9 47.4 learn from our expert how to tie a thread for �y �sh-

ing in this free how - to video on �y tying tips and

techniques .

5c ASR output 46.1 34.7 learn tips and techniques for �y �shing in this free

�shing video on techniques for and making �y �sh-

ing nymphs .

7 Action Features +

RNN

46.3 34.9 learn about the equipment needed for �y tying , as

well as other �y �shing tips from our expert in this

free how - to video on �y tying tips and techniques .

6 Action Features

only

38.5 24.8 learn from our expert how to do a double half hitch

knot in this free video clip about how to use �y �sh-

ing .

2b Next Neighbor 31.8 17.9 use a sheep shank knot to shorten a long piece of rope

. learn how to tie sheep shank knots for shortening

rope in this free knot tying video from an eagle scout

.

1 Random Baseline 27.5 8.3 learn tips on how to play the bass drum beat variation

on the guitar in this free video clip on music theory

and guitar lesson .

Table 6.4: Example outputs of ground-truth text-and-video with hierarchical a�ention (8),

text-only with ground-truth (5a), text-only with ASR output (5c), action features with RNN

(7) and action features only (6) models compared with the reference, the topic-based next

neighbor (2b) and random baseline (1). Arranged in the order of best to worst summary in

this table.

than human annotations with the action-only model (6) being the shortest as expected. Inter-

estingly, the two di�erent uni-modal and multimodal systems with ground-truth text and ASR

output text features are very similar in length showing that the improvements in Rouge-L and

Content-F1 scores stem from the di�erence in content rather than length. Example presented

in Table 6.4 shows how the outputs vary.
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Q1. is there only one person ?
Q2. does she walk in with a towel around her neck ?
Q3. does she interact with the dog ?
Q4. does she drop the towel on the floor ?

QUESTIONS

A1. there is only one person and a dog .
A2. she walks in from outside with the towel around her neck .
A3. she does not interact with the dog
A4. she dropped the towel on the floor at the end of the video .

ANSWERS

the girl walks into a room with a dog with a towel around her 
neck . she does some stretches and then drops the towel .

SUMMARY

a person walked through a doorway into the living room with a 
towel draped around their neck , and closed the door . the 
person stretched and threw the towel on the floor .

CAPTION

VIDEO KEYFRAME

Figure 6.5: An example from the Charades dataset. For every video, there exists a video-

dialog of 10 questions and answers each. �e dataset additionally has the audio, summary

and caption for each video.

6.3 �estion Answering

6.3.1 Task Description

Inspired by the popular American word guessing game, Charades, where one player acts out a

phrase and the other players guess what phrase it is, Sigurdsson et al. 2016 collect the Charades
dataset of common human household activities. �ey ask annotators on Amazon Mechanical

Turk to record their activities at home using their personal equipment, and upload the recorded

video to their platform. �ey follow a set procedure for these recordings called the Hollywood
in Homes approach: (1) script generation, (2) video direction and acting based on the scripts,

and (3) video veri�cation. At the time, this was the largest dataset of common household

activities recorded at home and in an uncontrolled environment. �ey collect 10,000 videos in

total, averaging 30 seconds each. �ere are 157 unique actions across the dataset. An example

video from this dataset can be viewed at https://youtu.be/x9AhZLDkbyc.

Alamri et al. in 2019 extend this dataset to a Video �estion Answering task, the Audio-Visual

Scene-Aware Dialog (AVSD) task. �ey take the videos collected in the Charades dataset and

collect 10 question-answer dialog sets for each, in addition to a video summary and a caption.

�e summary is a compressed version of the actions/activities in the video, whereas the caption

is a more descriptive text of video content. �is was one of the �rst video dialog datasets that

contained the audio, video, summary, question, answer, and dialog modalities. �e goal of the

AVSD task is to automatically answer questions about a visual stream (i.e., videos or images)

and maintain dialog context across the various questions.

https://youtu.be/x9AhZLDkbyc
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Figure 6.6: Our best performing model use the weights of a trained summarization model on

the How2 dataset (le�) to initialize the training of our DTSC7 challenge model (right).

6.3.2 Transfer Learning: Summarization to QA

�ere are many common modalities between the Charades dataset and the How2 dataset. To

exploit this fact and increase the training data for this task, we �rst train models on the How2

data and then �ne-tune (FT) them on the Charades dataset. �e transfer learning setup and

respective input modalities are shown in Figure 6.6. �e models trained on How2 data use

transcription of video (and/or video features) in the input and generate an abstractive tex-

tual summary of the video in the output. �e methods used for training these are described

in (Libovický et al., 2018). We initialize the training of a sequence-to-sequence model for the

Charades data with the weights of this learned model, using summary+question (and/or video

features) in the input and generating the answer in the output. While �ne-tuning, we share

the vocabulary for the two datasets and randomly initialize words that do not occur in both.

Although the two datasets have the same modalities, there are di�erences in the outputs. �e

main di�erence between the two datasets is that the summaries of the How2 dataset (usually

2-3 sentences) follow a particular pa�ern or template as described in (Sanabria et al., 2018),

while the pa�ern of answers (usually single sentence) in the AVSD dataset do not follow any

speci�c template, and are linguistically free-�owing
1
. Also, the videos in the How2 dataset are

much longer and semantically-task speci�c (instructional) than the Charades dataset where

they are about day-to-day activities, making the visual modality a semantically richer modality

for How2.

We participated in the 7th Dialog State Tracking Challenge (2019) which used this dataset and

applied our video summarization models described in Section 6.2.2 via Transfer Learning to

Dialog-based Video �estion Answering. Our submissions ranked �rst in the automatic as

well as human evaluation metrics of this challenge.

1

�e AVSD data collection procedure tried to avoid “Yes”-“No” answer biases and short answer biases by col-

lecting more descriptive answers (Alamri et al., 2018)
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6.3.3 Experimental Setup

Dataset �e DSTC7 organizers crowdsourced human annotated questions, answers, cap-

tions, and summaries from videos belonging to the Charades dataset (Sigurdsson et al., 2016)

to curate the Audio-Visual Scene Aware Dialog dataset (Alamri et al., 2017, 2018; Sigurdsson

et al., 2016). �e original videos of this dataset contain untrimmed and multi-action videos. In

the DSTC7 dataset, each video has ten questions and answers pairs. �e dataset statistics for

training, validation, disclosed test and undisclosed evaluation test set are given in Table 6.5.

Charades How2
Split Sentences Videos Videos

train 76590 7659 73993

val 17870 1787 2965

test 7330 733 2156

held out 6745 1710 169*

Table 6.5: Dataset statistics for Charades and How2. �e number of videos in the held out

test set of How2 is from the 300 hours subset of the data (*).

Multimodal Features To fully exploit the information provided in the videos we extract

di�erent representations from each modality. To do so, we use DNNs trained for a particu-

lar task to extract their internal representation. Based on empirical observations, we know

that pre-trained DNNs capture speci�c characteristics to solve an speci�c task. �erefore we

use DNNs trained for object recognition, place recognition, action recognition and audio even

detection to extract meaningful representation of the data. We hypothesize that each of this

features will capture information of the video that will be useful to answer each question.

Object Features: �ese feature are an intermediate representation of a CNN ResNet-50 trained

with the ImageNet datset (Deng et al., 2009a)
2
. ImageNet is a dataset for object recognition

with more than one milion of images annotated with 1000 classes.

Place Features: (Nallapati et al., 2016) extract scene feature representations from a static image.

In this case, the network is trained to recognize scenes from an image. More speci�cally, (Nal-

lapati et al., 2016) trained the network with Places dataset (Zhou et al., 2017) that contains 10

million images comprising with more than 400 classes.

I3D Flow: (Carreira and Zisserman, 2017) are video features extracted from an spatiotemporal

CNN architecture trained for action recognition. �e network is trained to recognize 400 dif-

ferent human actions. (Carreira and Zisserman, 2017) use a optical �ow representation of the

Kinetics Human Action Video dataset that contains 400 samples for class. We extract a 2048

dimensional representation from the Mixed 5c layer.

I3D RGB: are also video features from (Carreira and Zisserman, 2017) but instead of using

optical �ow, the network use video frames with three channels as input stream.

2

h�ps://github.com/KaimingHe/deep-residual-networks
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3D ResNeXt: (Hara et al., 2018) is a 3 dimensional version of the traditional ResNet-101. �e

third dimensionality of the convolution allows us to extract features from the video instead

from an image. �e network, similar to VGGish and I3D Flow, is trained with the Kinetics

Human Action Video dataset. From 3D ResNeXt, we extract a 2048 dimensional vector.

VGGish: (Hershey et al., 2017) are audio features that have been extracted from a CNN to

perform audio even detection network. �e network architecture is inspired by the traditional

image classi�cation network: VGG. �is network works with log Mel spectrograms features

extracted from 16 KHz audio recordings. �e network was trained with 70M training videos

(5.24 million hours) with a total of 30,871 target labels. We use a 128-dimensional embedding.

Evaluation We report the common natural language processing metrics like BLEU (Papineni

et al., 2002), METEOR (Denkowski and Lavie, 2014), ROUGE-L (Lin and Och, 2004), and CIDEr

(Vedantam et al., 2015). In addition to these objective evaluation metrics for this task, the

organizers also evaluated some models on crowdsourced human scores. �e human evaluators

were asked to score model outputs based on how semantically, grammatically and factually

correct the generated answers are.

Models We apply the same text-, video-, and text-and-video multimodal models as for sum-

marization to this task. For the added audio modality via VGGish features, we apply the same

hierarchical a�ention model. �is is to evaluate the robustness of the hierarchical a�ention

model on other abstractive tasks as well as to evaluate the fusion mechanism on a vast array

of multimodal features. We additionally evaluate the bene�ts of transfer learning on datasets

with shared modalities.

6.3.4 Results

Table 6.6 presents our di�erent models trained using Charades and How2 data, and using var-

ious modalities one at a time (text-only, video-only) or together (text-and-video). First, we

report the baseline results using the model architecture and code-base provided by the com-

petition organizers (Alamri et al., 2017). We replicate their results using I3D RGB, I3D Flow

and VGGish features. To compare the performance of di�erent visual features, we use Ob-

jects, Places and 3D ResNeXt in the baseline and observe similar or slightly worse performance

showing that all features are equally rich representations.

For text-only models (model #7 and #8 in Tables 6.6, 6.7), the input is a concatenation of the

summary of the video followed by the question. �e summary is repeated for every question

following the assumption that it has relevant input information for each question. Further, we

will see that improvements in the text-and-video models over text-only models show that only

using the summary in the input may not be su�cient and visual features are useful in such

scenarios. In the video-only models (model #9 and #10), we observe lower performance than
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No. Description BL-1 BL-2 BL-3 BL-4 MET R-L C

Input: Text and Video (di�erent features), Model: Baseline (Alamri et al., 2017)

1 Charades & I3D RGB

& I3D Flow 0.273 0.173 0.118 0.084 0.117 0.291 0.766

2 Charades & I3D RGB

& I3D Flow & VGGish 0.271 0.172 0.118 0.085 0.116 0.292 0.791
3 Charades & Objects 0.272 0.173 0.117 0.083 0.118 0.287 0.742

4 Charades & Places 0.269 0.171 0.116 0.082 0.116 0.286 0.727

5 Charades & 3D ResNeXt 0.264 0.166 0.112 0.079 0.116 0.284 0.711

6 Charades & 3D ResNeXt

& Objects & Places 0.276 0.176 0.120 0.085 0.118 0.287 0.752

Input: Text Only, Model: S2S

7 Charades 0.297 0.200 0.142 0.105 0.138 0.330 1.079

8 How2 FT Charades 0.311 0.212 0.152 0.114 0.146 0.337 1.169

Input: Video Only (3D ResNeXt features), Model: Video-RNN

9 Charades 0.264 0.170 0.118 0.085 0.116 0.294 0.804

10 How2 FT Charades 0.279 0.179 0.122 0.086 0.122 0.300 0.833

Input: Text and Video (di�erent features), Model: Hierarchical A�ention

11 Charades & Objects 0.274 0.179 0.125 0.091 0.121 0.301 0.876

12 Charades & Places 0.287 0.191 0.136 0.101 0.133 0.320 1.036

13 Charades & VGGish 0.303 0.206 0.148 0.110 0.144 0.338 1.150

14 Charades & 3D ResNeXt 0.306 0.209 0.150 0.112 0.144 0.338 1.161
15 How2 FT Charades

& 3D ResNeXt 0.307 0.210 0.151 0.113 0.145 0.339 1.180

Table 6.6: Automatic evaluation metrics on the test set provided by the organizers

(groundtruth available). Models 1-6 are trained using the methods described in (Alamri et al.,

2017) with di�erent modalities. We treat them as our baselines. Models 7 and 8 are trained

on text-only, models 9 an 10 on video-only and models 11-15 on text-and-video. Models 8, 10

and 15 are �rst trained on the How2 data and then �ne-tuned FT on the Charades data.

the text-only model as expected. It is interesting to note that the video-only model is worse

only by about 3-4 ROUGE-L points than the text-only model showing the richness of the visual

features (3D ResNeXt). In text-and-video models (model #11-15), we use Hierarchical a�ention

for multimodal adaptation with di�erent visual features. We observe that 3D ResNeXt performs

the best for adaptation models.

We �ne-tune each of these models on the summarization models trained using the How2 data.

In the text-only (model #8) and video-only (model #10), we see substantial gains using �ne-

tuning over models trained only on Charades data. For the text-and-video model, the gains are

not too high, and further exploration of this behavior is necessary to understand why.

Table 6.7 shows the 4 best models from Table 6.6 which we submi�ed to the challenge. �ese

were evaluated on the undisclosed evaluation test set by the challenge organizers. �e baselines

(model #1 and #2) are same as those in the previous table but evaluated on the undisclosed test
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No. Description BL-1 BL-4 MET R-L C Human

Input: Text and Video (di�erent features), Model: Baseline (Alamri et al., 2017)

1 Charades & I3D RGB

& I3D Flow 0.621 0.305 0.217 0.481 0.733 -

2 Charades & I3D RGB

& I3D Flow & VGGish 0.626 0.309 0.215 0.487 0.746 2.848

Input: Text Only, Model: S2S

7 Charades * 0.692 0.364 0.254 0.543 1.006 -

8 How2 FT Charades * 0.711 0.376 0.264 0.554 1.076 3.394

Input: Text and Video (3D ResNeXt features), Model:Hierarchical A�ention

9 Charades * 0.718 0.394 0.267 0.563 1.094 3.491
15 How2 FT Charades * 0.723 0.387 0.266 0.564 1.087 3.459

- Groundtruth - - - - - 3.938

Table 6.7: Automatic and Human evaluation scores on the undisclosed evaluation test set

prepared by DTSC7 organizers (we do not have access to groundtruth). Models 1 and 2 are

the same baselines as in Table 6.6. Models 3 and 4 are trained on text-only. Models 5 and 6

are trained on text-and-video using Hierarchical a�ention. Models 4 and 6 are �rst trained on

the How2 data and then �ne-tuned FT on the Charades data. Systems marks with an asterisk

(*) were the ones submi�ed to the challenge. Model 6 i.e. ‘How2 FT Charades’ was the best

performing model. Note that the �rst column has a reference number to the model in Table 6.6.

set. �e trends we observe on the prototype test set are same as those observed on the undis-

closed test set. Additionally, this table also contains the human evaluation scores. �e human

evaluators were asked to rate the system generated answers as well as the groundtruth refer-

ences answers which scored a topline of 3.938, using the human evaluation strategies designed

by the challenge organizers. Our best model scores 3.491 on this metric while the baseline

scores only 2.848. �is further shows that our models score well not only in quantitative scores

but also in qualitative scores.

Error Analysis We perform certain qualitative analysis of the di�erent models: text-only,

video-only and text-and-video, each with �ne-tuning, to be�er understand the quality of the

results and the model behavior (refer Table 6.8). We compute the number of unique words in

the answers generated by each of the three models. We observe that multimodal fusion and

�ne-tuning with How2 both help increase the number of unique words. Another metric we

use is the average length of outputs (avg.). Fine-tuning leads to longer outputs in text-only

and video-only models. �ese models also led to higher gains over Charades only models in

Table 6.6. Our �nal metric is the percentage (%) of sentences changed in a given system when

compared with the text-only model trained only on Charades data. We compute this metric

by counting all tokens changed, as well as by counting only content-based tokens, i.e. not

counting stop words or punctuation as changed. We see the maximum percentage of changed

sentences are in the video-only models. �e di�erence percentage change by considering only

content words is approximately 10-15% absolute.
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Modality Model # unique Avg. o/p % sent. % sent changed
words len changed in content word

Text Charades 384 8.98 - -

only How2 FT Charades 726 9.23 79.46% 65.30%

Video Charades 269 9.22 83.60% 72.35%

only How2 FT Charades 331 9.37 87.00% 74.91%

Text & Charades 488 8.95 76.37% 59.00%

Video How2 FT Charades 740 8.98 77.72% 60.21%

Table 6.8: �alitative evaluation of di�erent systems. % sentences (sent) changed are with

respect to text-only Charades model.

6.4 Chapter Conclusion

We extend the series of learning tasks for video understanding to video summarization and

video question answering in this chapter. We present models for the abstractive nature of

these natural language generation tasks and explore a transfer learning method between the

two to leverage common modalities and common task characteristics.

We present the Hierarchical Latent Representation Fusion model to design video-level control

over the temporal sequences of inputs modalities: audio, video and text. �is model is an

evolution over the Monotonic Input Fusion and Latent Representation Fusion models. We

discuss the drawbacks of these two models for abstractive tasks and the need and bene�ts of the

Hierarchical model. We demonstrate the application of this model to the two abstraction tasks

and show consistent improvement with Hierarchical multimodal modeling over established

baselines as well as uni-modal models.



Chapter 7

Proposed Work

In Chapters 4, 5, and 6, we discussed multimodal grounding for various video understanding

tasks. Across chapters, task complexity and consequently multimodal modeling complexity

and modalities involved increased. As proposed work, we extend this further to a Rational-
ization task. With the rationalization task, we extend beyond abstract-learning tasks to also

generate explainable rationales for the candidate answers in a �estion Answering task. �ese

rationales can be a powerful interpretability tool as well as a user-targeted explanation tech-

nique that provides support for the model hypotheses.

Visual Commonsense Reasoning (VCR) is an example of multimodal rationalization that has

been introduced in recent years (Li et al., 2018; Zellers et al., 2019). VCR is designed as a

question answering task: given an image and a set of questions, a correct answer is to be

chosen from amongst four choices, and a corresponding rationale has to be chosen, again from

four choices, for that particular answer. �e answer and rationale choices are human annotated

and to simplify the reasoning task, this problem is designed as a classi�cation problem.

As proposed work, we extend this problem to an open-ended language generation task that

goes beyond classi�cation by generating open-vocabulary rationales for Video �estion An-

swering. �is is a very hard problem for language generation as there are multiple poten-

tial correct rationales for a given question-answer pair. As with all open-ended generation

problems, it also su�ers from poor automatic evaluation metrics. Related work has proposed

human-evaluation metrics to evaluate the faithfulness (Wu and Mooney, 2018; Jain et al., 2020;

Jacovi and Goldberg, 2020) and plausibility of generated rationales (Marasović et al., 2020), but

this evaluation is di�cult to use during training and for reproducibility of results. Despite

these challenges, Rationalization �ts as the next relevant task for us to explore in this the-

sis in continuation to Recognition, Translation, and Summarization, as an extension towards

interpretable and explainable multimodal video understanding.

�e nature of rationalization is inherently interpretable i.e. it provides commonsense reasoning

or explanations for a given question-answer pair. Additionally, there is a dependency between

the answer and the corresponding rationale that has not been studied in related work yet,

72
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Figure 7.1: Expanding the fusion models to the �nal model: Hierarchical Interpretable Fusion

model.

especially for joint, open-ended rationalization. To capture these two properties of (1) Inter-

pretability, and (2) Dependency, we propose to model this task via a Hierarchical Interpretable
Fusion model shown in Figure 7.1. Interpretability for this task can be achieved in two ways;

�rst by generating an answer as an intermediate step before rationalization, and second by

the generated rationale itself that explains the reasoning for a given answer to be the correct

answer. Dependency in turn refers to the fact that the correctness of the answer and of the

rationale go hand-in-hand. Speci�cally, the rationale generated needs to depend on the answer

already generated. �is constraint is implicitly controlled with the proposed Hierarchical In-

terpretable Fusion model (explained below) but explicit control for such modeling is a much

more di�cult problem (due to the open-ended nature of this language generation). To evalu-

ate if this dependency is modeled within the proposed approach, we will design the necessary

human evaluation experiments.

With the three previous multimodal fusion models, we focused explicitly on methods of fusion

and controllability, each gradually increasing in complexity to handle the task and modality

complexities. With the Hierarchical Interpretable Fusion model, we combine the Latent Repre-
sentation Fusion and Hierarchical Latent Representation Fusion together, while also aiming for

interpretable generation. For the scope of this work, we de�ne interpretable generation as the

generation of some observable, not latent, intermediate output Y1 followed by �nal observable

output Y2. Each of these outputs undergo latent modality fusion represented by LY1 and LY2.

LY1 and Y1, or LY2 and Y2 could individually form the Hierarchical Latent Representation Fu-
sion model from the previous chapter. �e dependency between the two outputs Y1 and Y2 as

shown in Figure 7.1 represents the combination of the previous fusion models into this one.
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We will develop and apply this model to the rationalization task where XM1 and XM2 will be

the input image and questions, Y1 will be the answer, andY2 the corresponding rationale. Given

the nature of the rationalization task, this particular model is well suited for the interpretability

as well as dependency properties.

Plan

We have been working on developing the Hierarchical Interpretable Fusion model. Currently,

we are testing it on a simpler image captioning task with the intermediate output Y1 being

entities, followed by the natural language caption. We will extend this model to the rational-

ization task. I will continue work on rationalization at AI2 this summer with a particular focus

on answer-rationale co-generation.

Timeline

�esis timeline for 2021-2022

April 2021 • �esis Proposal

Now-May 2021 • Hierarchical Interpretable Learning for Rationale generation

May-Aug 2021 • Summer Internship at AI2 on Rationalization

Aug-Dec 2021 • Wrap up work on Rationalization

Jan-Feb 2022 • �esis Writing

Mar-Apr 2022 • �esis Defense
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